إعـــــــلان

تقليص
لا يوجد إعلان حتى الآن.

علم المعادن

تقليص
X
 
  • تصفية - فلترة
  • الوقت
  • عرض
إلغاء تحديد الكل
مشاركات جديدة

  • #31
    فصيلة السداسي Hexagonal System

    المحاور البلورية تشمل هذه الفصيلة جميع البلورات التي لها أربعة محاور بلورية ، ثلاثة منها متساوية في الطول وتقع في مستوى فقي وتتقاطع بزوايا قدرها 120 جرجة ، أما المحور الرابع فمختلف عنها في الطول (إما أن يكون أطول أو أقصر) ، ويمتد رأسيا (أي متعامدا على المحاور الأفقية) ، ويرمز إلى المحاور الأفقية بالرموز أ1 ، أ2 ، أ3 ، أما المحور الرأسي فهو المحور ج ، شكل (59).
    ولما كانت فصيلة الثلاثي لها نفس العدد من المحاور البلورية ، فإن بعض المؤلفين يضم البلورات الثلاثية والدساسية في فصيلة واحدة هي فصيلة لاسداسي ، ولكن نظرا للفارق الأساسي في البناء الضري ، وهو أن المحور الأساسي للتماثل هو سداسي في بلورات السدسي وثلاثي في بلورات الثلاثي ، وأن بلورات الثلاثي لا تحتوي على مستوى تماثل أفقي بالمرة ، فإننا نجد أنه من الأكثر صوابا أن ندرس البلورات السداسية كفصيلة بذاتها ، مستقلة عن فصيلة الثلاثي التي تشمل البلورات الثلاثية.
    وتعرف نسبة طول الوحدات على المحور ج إلى أ بالنسبة المحورية ج:أ ، وهي مميزة لكل بلورة سداسية . فمثلاة بلورة معدن بيرل لها نسبة محورية ج:أ = 0.996 ، أما في معدن بيروتيت فنجد أن النسبة المحورية ج:أ = 1.650.
    وتمسك البلورة السداسية بحيث يكون المحور الرأسي ج دائما محورا سداسي التماثل (دوراني أو انقلابي). ويمتد المحور أ2 موازيا لماسك البلورة من اليمين (+) إلى اليسار (-). أما المحور أ1 ، فيمتد من الأمام ناحية اليسار (+) إلى الخلف ناحية اليمين (-). أما الطرف الموجب من المحور أ3 فيقع في الخلف إلى اليسار بينما طرفه السالب يقع في الأمام إلى اليمين. شكل (59).

    تعليق


    • #32
      جدول رقم 5 النظم البلورية في فصيلة السداسي

      الهرم المنعكس السداسي المزدوج 6/م 2 6/م ن بيريل Be3Al2Si6O18
      شبه المنحرف الأوجه السداسي 6 2 3 2 3 كوارتز عالي الحرارة
      الهرم المنعكس الثلاثي المزدوج 6 2 3 م 3 بنيتويت BatiSi8O9
      الهرم السداسي المزدوج 6/م ن زنكيت ZnO
      الهرم المنعكس السداسي 3 أباتيت
      الهرم المنعكس الثلاثي 6 --
      الهرم السداسي نيفيلين

      تعليق


      • #33
        النظام العددي أو نظام الهرم المنعكس السداسي المزدوج Dihexagonal Bipyramidal Class

        التماثل
        قانون التماثل الكامل: 6/م 2 3/م 2 3/م ن ، شكل (60).
        المحاول التماثلية: المحور ج هو محور سداسي التماثل . وتوجد ثلاثة محاور أفقية ثنائية التماثل تنطبق على المحاور البلورية أ. وكذلك توجد ثلاثة محاور أخرى ثنائية التماثل تنصف الزوايا بين المحاور البلورية أ1 ، أ2 ، أ3 ، شكل (60).
        المستويات التماثلية: يوجد في هذا النظام سبعة مستويات تماثلية بياتها كالآتي ، شكل (6):
        مستوى تماثل أفقي يشمل المحاور البلورية ثلاثة مستويات تماثلية رأسية يشمل كل منها المحور الرأسي ج وأحد المحاور البلورية الأفقية. ثلاثة مستويات تماثلية رأسية تنصف الزوايا بين المستويات الرأسية السابقة (المستويات التماثلية المحورية).
        مركز التماثل: يوجد مركز تماثل في بلورات هذا النظام ويتطلب أن يكون لكل وجه وجه آخر مقابل له.
        الأشكال البلورية
        ملاحظة: سوف نستعمل كلمة مزدوج di ، مثل سداسي dihexagonal ، لوصف الأشكال التي تتكر أوجهها اثنين اثنين حول المحور التماثلي ، أما الأشكال التي تتكرر أوجهها بالنسبة للمستوى التماثلي فسوف نصفها بكلمة منعكس bi ، مثل هرم منعكس bipyramid ، نسبة إلى الانعكاس خلال مستوى التماثل الأفقي.

        تعليق


        • #34
          الأهرامات المنعكسة bipyramids ، وهي عبارة عن أشكال مقفولة تقطع أوجهها المحور ج بصفة أساسية وبعض أو كل المحاور الأفقية. توجد ثلاثة أنواع من الأهرامات المنعكسة السداسية.
          هرم منعكس سداسي من الرتبة الأول (أو هرم منعكس وتري ، شكل (61) ، يتكون هذا الشكل من 12 وجها لها الأحداثيات (أ: ∞ أ : أ: م ج). أو بمعنى آخر تقطع محورين متجاورين أ (تصل بينهما مثل الوتر) شكل (65) ، وتمتد موازية للمحور الأفقي الثالث وتقطع المحور الرأسي ج فإذا كان التقاطع على المحور ج مساويا لطول الوحدة فإن الدليل يكون في هذه الحالة {1101} ، وهذا هو هرم الوحدة Unit pyramid. أما الدليل العام لهذا الشكل فهو {هـ هـ ل}.
          هرم منعكس سداسي من الرتبة الثانية ، شكل (63) ، ويختلف هذا الشكل عن الهرم المنعكس السداسي من الرتبة الأولى في أنه عندما تمسك البلورة في القراءة الصحيحة (المحور أ2 دائما موازي لماسك البلورة) ، فإنه يوجد في مواجهتك حرف وليس وجه بلوري ، وهذا يعني أن المحاور البلورية الأفقية عمودية منصفة للأحرف الأفقية (ويسمى لهذا السبب بالهرم المنعكس المتعامد) شكل (66) ، ونجد كما في الشكل (66) ، أن كل وجه بلوري في هذا الشكل يقطع أحد المحاور البلورية الأفقية في مسافة الوحدة ويقطع المحورين الآخرين على مسافتين أطول ، ولكن متساويتين ، وتكون الأحداثيات إذن (ن أ: ن أ : أ : م ج) والدليل هو {هـ هـ 2 هـ ل} ، ويتكون هذا الشكل من 12 وجها في هيئة مثلثات متساوية الساقين تقفل الفراغ.

          تعليق


          • #35
            هرم منعكس سداسي مزدوج ، شكل (67) ، تقطع أوجه هذا الشكل المحاور الأفقية الثلاثة أ2 ، أ2 ، أ3 في مسافات غير متساوية ، وتكون الأحداثيات إذن هي (ن أ: ط أ: أ : م ج) ، شكل (69) ، والدليل هو (هـ ك و ل). ويتكون هذا الشكل من 24 وجها ، كل وجه منها في الحالة النموذجية يكون في هيئة مثلث غير متساوي الأضلاع ، ولكن المثلثات كلها متشابهة. في أحداثيات هذا لاشكل نجد أن ط = ن/1 – ن.
            المنشورات Prisms ، وهذه عبارة عن أشكال مفتوحة يوازي الوجه فيها المحور ج ويقطع بعض أو كل المحاور الأفقية أ2 ، أ2 ، أ3. وهناك ثلاثة أنواع من المنشورات تقابل الأنواع الثلاثة من الأهرامات سالفة لاذكر.
            منشور سداسي من الرتبة الأولى (منشور سداسي ولري) ، شكل (62) ، يمكن الحصول على أوجه هذا الشكل من أوجه الهرم المنعكس الذي له نفس الرتبة (الأولى في هذه الحالة) إذا جعلنا التقاطعات على المحور ج تأخذ أكبر قيمة لها ، أي قيمة مالانهاية. وينتج عن ذلك أن نختزل أوجه الهرم المنعكس الاثنتا عشر إلى ستة أ,جه فقط ، يقطع كل وجه منها محورين أفقيين في مسافة تساوي الوحدة ويمتد موازيا للمحور الأفقي الثالث ، ، يوزاي المحور ج ، (المنشور بحكم تعريفه يوازي المحور ج). ويكون هذا المنشور شكلا مفتوحا وفيه تصل المحاور الأفقية أ بين منتصف الحروف المتقابلة ، وينتج عن ذلك أن يكون في مواجهة ماسك البلورة وجها بلوريا. الأحداثيات (أ: ∞ أ: أ : ∞ ج) ، والدليل {01 1 0}.
            منشور سداسي من الرتبة الثانية (منشور سداسي متعامد) ، شكل (64) ، نجد في هذا الشكل البلوري أن المحاور البلورية الأفقية أ2 ، أ2 ، أ3 تصل بين مراكز الأوجه المتقابلة ، ويكون في مواجهة ماسك البلورة نتيجة لذلك حرفا. الأحداثيات هي ( 2أ: 2أ: 1: ∞ ج) والدليل هو { 0211}. يتكون هذا الشكل من ستة أوجه لا تقفل الفراغ (شكل مفتوح).
            منشور سداسي مزدوج ، شكل (68) ، شكل مفتوح ، ويتكون من 12 وجها يتساوى كل وجهين متبادلين فيه (أي واحد بعد واحد) في الزوايا والحروف. الأحداثيات (ن أ: ط أ: أ : ∞ ج) ، والدليل هو {هـ ك و} ، ويقابل هذا الشكل الهرم المنعكس السداسي المزدوج.
            المسطوح القاعدي: وهو عبارة عن شكل مفتوح مكون من وجهين ، كل وجه يقطع المحور ج ويوزاي المحاور الأفقية أ. والأحداثيات (∞ أ : ∞ أ: ∞ أ: ج) والدليل هو {1000}. يرى المسطوح القاعدي في الأشكال (62 ، 64 ، 68) مجموعات مع المنشورات.

            تعليق


            • #36
              مجموعات الأشكال:
              توجد على بعض البلورات مجموعة من الأشكال البلورية المختلفة فمثلا في بلورة بيريل Beryl ، شكل (70) ، توجد مجموعة من هرم منعكس سداسي من الرتبة الأولى وآخر من الرتبة الثانية ، ومنشور سداسي من الرتبة الأولى وآخر من الرتبة الثانية ، ومسطوح قادعدي. وفي شكل (71) نلاحظ مجموعة أخرى من الأشكال على بلورة أخرى لمعدن البريل.
              أمثلة من المعادن: يتبلون معدن بيريل Beryl (Be3Al2Si6O16) ، شكل (70 ، 71) في هذا النظام الكامل التماثل. كذلك يتبلور في هذا النظام معادن مولبدينيت Molybdenite (MoS2) ، بيروتيت Pyrobotite (FeS).
              مميزات البلورات السداسية:
              تتميز جميع البلورات السداسية غير المشوهة في النظام كامل التماثل وفي معظم النظم الأقل تماثلا بالمظهر السداسي حيث يكون المحور الرأسي محورا دورانيا سداسي التماثل. ولكن في نظامين فقط قد تبدو البلورات ثلاثية المظهر حيث يكون المحور الرأسي محورا انقلابيا سداسي التماثل ، وفي هذين النظامين يكون هناك دائما مستوى تماثل أفقي يعكس (أو يكرر) الأشكال البلورية العليا إلى أشكال بلورية سفى (في النصف الأسفل للبلورة) [المعروف أن المحور الانقلابي السداسي يعادل محور دوراني ثلاثي متعامد على مستوى تماثل]. كما تتميز البلروات بأن أوجه الأشكال البلورية (باستثناء المسطوح القاعدي) ، تتكون عموما من ستة أوجه أو مضاعفات العدد ستة.

              تعليق


              • #37
                فصيلة الرباعي Tetragonal System

                المحاور البلورية: تشمل هذه الفصيلة جميع البلورات التي لها ثلاثة محاور بلورية متعامدة ، إثنان منها متساويان في الطول ويقعان في مستوى أفقي والثالث مختلف عنها في الطول (إما أقصر أو أطول) وعمودي عليهما. ويرمز إلى المحورين المتساويين بالمرز أ1 ، أ 2 ، أما المحور الرأسي فيرمز إليه بالرمز ج ، شكل (72).
                وتعرف نسبة طول الوحدة على المحور ج إلى طول الوحدة على المحور أ بالنسبة المحورية ج:أ ، وهي مميزة لكل بلورة رباعية. فمثلا بلورة معدن كاسيتريت Vassitetite (SnO2) ، لها نسبة محورية ج: أ = 0.672 (أي ج أقصر من أ) ، وفي الزركون Zircon (ZrSiO4) ، ج: أ = 0.891 أما في معدن أناتيز Anatase (TiO2) ، فنجد أن نسبة ج:أ = 1.777 (أي ج أطول من أ). وتمسك البلورة الرباعية بحيث يكون المحور الرأسي ج دائما محور رباعي التماثل (دوراني أو انقلابي).
                وتشمل فصيلة الرباعي سبعة نظم بلورية (مثل فصيلة السداسي ) ، كما يلي في جدول (6):
                النظام قانون التماثل الكامل مثال من المعادن الهرم المنعكس الرباعي 4/م 2 4/م ن الزركون ZrSiO4 شبه منحرف الأوجه الرباعي 4 2 2 2 2 فوسجينيت (PbO)2CCl2O الوتد المنعكس الرباعي 4 2 2 2 2 كالكوبيربت CuFeS2 الهرم الرباعي المزدوج 4 م 2 م 2 ديابولييت PhCuCl2(OH)4 الهرم المنعكس الرباعي 4/م ن شيليت CaWo4 الوتد الرباعي 4 كاهنيت الهرم الرباعي 4 ولفينيت PbMoO4
                جدول (6) النظم البلورية في فصيلة الرباعي
                النظام العادي أو نظام الهرم المنعكس الرباعي المزدوج
                التماثل
                قانون التماثل الكامل: 4/م 2 2 /م 2 2 /م ن أو 4/م 2 4 /م ن ، شكل (73).
                المحاور التماثلية: يوجد محور واحد رباعي التماثل منطبق على المحور البلوري ج ، وأربعة محاور ثنائية التماثل ، إثنان منها ينطبقات على المحورين أ1 ، أ2 ، والإثناء الآخران ينصفان الزوايا بين المحورين أ1 ، أ2.
                المستويات التماثلية: يوجد مستوى تماثل أفقي يشمل المحاور الأفقية أ1 ، أ2 (وعمودي على المحور ج) وأربعة مستويات متماثلة رأسية تمر بالمحور ج ، إثنان يشملان المحوران أ1 ، أ2 (بالإضافة إلى ج) والإثنان الآخران ينصفان الزوايا بين هذه المحورين.
                مركز التماثل: لبلورات هذا النظام مركز تماثل.
                الأشكال البلورية
                الأهرامات المنعكسة Bipyramids: وهذه عبارة عن أشكال مقفولة تقطع أوجهها المحور ج ، وأحد المحورين الأفقيين أ1 او أ2 ، أو كليهما. توجد ثلاثة أنواع من الأهرامات المنعكسة الرباعية مثل الثلاثة التي سبق أن ذكرناها في فصيلة السداسي.
                هرم منعكس رباعي من الرتبة الأولى (أو عرم منعكس وتري) ، شكل (74) ، ويماثل هذا الشكل شكل ثماني الأوجه في فصيلة المعكب ، ولكن نظرا لأن المحور ج يخالف في الطول المحورين الأفقيين أ ، فإن التقاطعات النسبية تكون أ: أ: ج والتي تدل على أن وجه هذا الشكل يقطع المحاور البلورية الثلاثة في مسافات الوحدة. ويكون هذا الشكل إذن هو شكل الوحدة .ولما كان التقاطع على المحور ج قد يكون أقصر أو أطول من طول الوحدة ، لذلك تكون الأحداثيات أ: أ: م ج ، والدليل {هـ هـ ل} ، حيث م هي قيمة عددية بين الصفر وما لا نهاية. يكون هذا النظام شكلا مقفولا من ثمانية أوجه ، كل وجه منها في هيئة مثلث متساوي الساقين ، (وليس متساوي الأضلاع مثل ثماني الأوجه).
                هرم منعكس رباعي من الرتبة الثانية (أو هرم منعكس متعامد) ، شكل (76) ، تقطع أوجه هذا الشكل المحور ج وأحد المحورين أ ، وتمتد موازية للمحور أ الآخر.وعلى ذلك تكون الأحداثيات (أ: ∞ ب: م ج) ، والدليل هو {هـ ، ل} ، يتكون الشكل من ثمانية أوجه تقفل الفراغ بمفردها.
                (ملاحظة): يلاحظ أنه في حالة الهرم المنعكس الوتري يواجه ماسك البلورة حرف ، في حين يواجه الهرم المنعكس المتعامد ماسك البلورة بوجه).
                هرم منعكس رباعي مزدوج ، (شكل78) ، تقطع أوجه هذا الشكل المحورين الأفقيين أ1، أ2 ، في مسافتين مختلفتين ، في حين يكون التقاطع على المحور ج إما مساويا للوحدة أو أكبر من ذلك (م ج) ، الأحداثيات (أ: ن أ: م ج) ، الدليل {هـ ك ل}. يتكون هذا الشكل من 16 وجها ، كل منها في هيئة مثلث غير متساوي الأضلاع.
                توجد ثلاثة أنواع من المنشورات الرباعية مثل الأنواع الثلاثة التي سبق أن ذكرناها في فصيلة السداسي.
                منشور رباعي من الرتبة الأولى (منشور رباعي وتري) ، شكل (75) ، يتكون هذا الشكل المفتوح من أربعة أوجه موزاية للمحور ج ، ولكنها تقطع كلا من المحورين أ1 ، أ2 ، الأحداثيات (أ: أ : ∞ ج) ، والدليل {011}. ونجد أن المحورين أ1 ، أ2 ، يصلان بين منتصف الحروف المقابلة ، وعلى ذلك يكون هناك حرفا مواجها لماسك البلورة عندما يكون المحور أ1 متدا من الأمام إلى الخلف.
                منشور رباعي من الرتبة الثانية (منشور رباعي متعامد) ، شكل (77): يتكون هذا الشكل المفتوح من أربعة أوجه موازية للمحور ج ، وكذلك موازية لأحد المحورين أ1 ، أ2 ، الأحداثيات (أ: ∞ أ: ∞ج) ، والدليل {001} ، في هذا الشكل نجد أن المحورين البلورين أ1 ، أ2 ، يصلان بين منتصف كل وجهين متقابلين.
                منشور رباعي مزدوج ، شكل (79): يتكون هذا الشكل المفتوح من ثمانية أوجه مرتبة في هيئة أربعة أزواج حول محور التماثل الرباعي. الأحداثيات (أ: ن أ: ∞ج) والدليل {هـ ك}. يوضح شكل (80) ، وضع أشكال الرتبة الأولى والثانية والأشكال المزدوجة بالنسبة للمحاور البلورية الأفقية أ1 ، أ2.
                المسطوح القاعدي ، ويعرف في بعض الأحيانب اسم "قاعدة" ويتكون من وجهين موازيين لمستوى التماثل الأفقي الأحداثيات (∞أ: ∞أ: ج) والدليل {100}. وهذا الشكل ، مثل المنشورات ، شكل مفتوح لا يوجد بمفردهخ وإنما يكون موجودا مع أشكال أخرى ، مثل المنشورات ، شكل (75 ، 77 ، 79).
                مجموعات الأشكال ، شكل (81 ، 82)، تظهر مجموعات مختلفة من الأشكال الرباعية على كثير من بلورات المعادن. فمثلا يوجد على بلورة الزركون ، شكل (81) ، مجموعة من المنشور الوري {011} ، والهرم المنعكس الوتري {111}. وقد تظهر بلورات أخرى من الزركون مجموعة من منشورات الرتبة الأولى والثانية مع الهرم المنعكس من الرتبة الأولى والهرم المنعكس الرباعي المزدوج ، شكل (82).
                أمثلة من المعادن: زركون ، شكل (81 ، 82) ، بروتيل ، كاستيرتيت.
                مميزات البلورة الرباعية:
                تتميز البلورات الرباعية بوجود محور رباعي التماثل (دوراني أو انقلابي) ، ينطبق دائما مع المحور البلوري الرأسي (ج) ، ويكون طول البلورة في هذا الاتجاه إما أكبر أو أقل من البعدين الآخرين (أ1 ، أ1) . وفي معظم النظم التابعة لهذه الفصيلة البلورية يكون المقطع المستعرض العمودي على المحور الرأسي الرباعي في البلورات كاملة الأوجه غير المشوهة في شكل مربع كامل أو مربع تقطع زواياه القائمة أوجه الأشكال المختلفة.

                تعليق


                • #38
                  فصيلة الثلاثي Trigonal System

                  المحاور البلورية
                  تتميز بلورات هذه الفصيلة بوجود محور ثلاثي التماثل وعدم وجود مستوى تماثل أفقي ، شكل (83) . وقد سبق أن أشرنا عند بدء الحديث عن فصيلة السداسي إلى العلاقة بين فصيلتي السداسي والثلاثي واشتراكهما في وجود أربعة محاور بلورية في بلوراتها (أ1، أ2 ، أ3، ج) ، حيث تتقاطع المحاور أ في زوايا مقداراها 120 درجة ، أما المحور ج فمتعامد عليها ، ومختلفة عنها في الطول (إما أطول أو أقصر).
                  ونتيجة لهذه العلاقة فإننا نجد أن بعض الأشكال البلورية السداسية (مثل المنشوريات السداسية من الرتبة الأولى والثانية) توجد في كل من هاتين الفصيلتين.
                  وتشمل فصيلة الثلاثي خمس نظم بلورية ، جدول (7):
                  النظام قانون التماثل الكامل مثال من المعادن مثلثي الأوجه الثلاثي المزدوج 3 2 3/م كالسيت شبه منحرف الأوجه الثلاثي 3 2 3 كوارتز منخفض الحرارة الهرم الثلاثي المزدوج 3 م3 تورمالين معيني الأوجه 3 دوالوميت C2Mg(CO3)2 الهرم الثلاثي 3 جراتونيت
                  جدول (7): النظم البلورية في فصيلة الثلاثي
                  نظام المثلثات الوجهية الثلاثية المزدوجة Ditrigonal Scalenobedral Class

                  التماثل

                  قانون التماثل الكامل
                  3 2 3/م ، شكل (84) ، تتكون عناصر التماثل في هذا لانظام من محور واحد فقط ثلاثي التماثل انقلابي ينطبق على المحور البلوري ج (3 = 3 + ن) ، وثلاثة محاور أفقية ثنائية التماثل عمودية على ثلاثة مستويات تماثلية رأسية.
                  وتنطبق المحاور ثنائية التماثل على المحاور البلورية أ1، أ2 ، أ3 ، شكل (84).
                  الأشكال البلورية
                  توجد الأشكال السداسية التالية في هذا النظام الثلاثي الكامل التماثل:
                  المسطوح القاعدي: {1000} ، يتكون من وجهين.
                  المنشور السداسي من الرتبة الأولى ، {0101} ، يتكون من ستة أوجه.
                  المنشور السداسي المزدوج : {هـ ك و 0} ، يتكون من اثنى عشر وجها.
                  الهرم المنعكس السداسي من الرتبة الثانية: {هـ هـ 2 هـ ل} ، يتكون من 12 وجها.
                  والمعروف أن هذه الأشكال سالفة الذكر توجد في فصيلة السداسي أيضا (النظام الكامل التماثل) ، أي أن هذه الأشكال مشتركة بين الفصيلتين ، والسبب في ذلك ، كما أن سبق قلنا ، هو العلاقة البلورية بين الفصيلتين ، واشتراكهما في أربعة محاور بلورية.
                  أما الشكلان التاليان فلا يوجدان في فصيلة السداسي وإنما تنفرد بهما فصيلة الثلاثي. هذا الشكلان هما معيني الأوجه ، ومثلثي الأوجه الثلاثي المزدوج.
                  معيني الأوجه: معيني الا,جه شكل مقفول يحده ستة أوجه معينية ، شكل (85 – أ ، ج) ، وفي هذا الشكل نجد أن الا,جه الثلاثة العليا ليست فوق الأوجه الثلاثة السفى مباشرة ، أي أن هذا الشكل البلوري ليس هرما منعكسا ، ولكنه شكل معيني الأوجه. ويمكن أن ننظر إلى معيني الأوجه على أنه مشتق من الهرم المنعكس السداسي ، شكل (85-ب) ، وذلك باختيار الأوجه العليا والسفلى المتبادلة (أي وجه علوي ثم الوجه السفي الذي يليه ثم الوجه العلوي الذي يليه وهكذا) ، ويصل المحور ج بين الزاويتين المتساويتين الثلاثية الأوجه (أي الزوايا التي تتكون نتيجة لتلاقي ثلاثة أوجه) ، وهذا المحور محور انقلابي ثلاثي التماثل ، أما المحاور الأفقية ، أ1 ، أ2 ، أ3 ، فإنها تصل بين منتصف الأحرف الوسطى المتقابلة.
                  ويتوقف حجم معيني الأوجه على نسبة أ: ج (يمكن اعتبار المكعب الممسوك بطريقة تجعل أحد محاوره الثلاثية التماثل يمتد رأسيا على أنه معيني الأوجه ذو أحرف وزوايا متساوية. وتحد أن نسبة أ: ج في هذه الحالة هي كنسبة 1: √1.5 أو 1: + 1.2245).
                  وعلى ذلك فإن الأشكال المعينية الأوجه التي توجد فيها قمية المحور ج بالنسبة إلى 1 أكبر من 1.2247 تكون لها زوايا قطبية (حيث يخرج المحور ج ) أقل من 90 درجة ، وينتج عن ذلك شكل معيني الأوجه حاد ، شكل (86 ، 87) ، أما اذا كانت قيمة النسبة اقل من 1.2247 ، فنجد أن الزوايا القطبية تكون أكبر من 90 درجة ، وينتج عن ذلك شكل معيني الأوجه منفرج ، شكل (88 ، 89). واحداثيات معيني الأوجه هي: (أ: ∞أ: أ: م ج) ، والدليل إما أن يكون {هـ هـ ل} أو {ك ك ل} ويطلق على الشكل {هـ هـ ل} ، أحيانا اسم معيني الأوجه الموجب ، أما {ك ك ل} فيطلق عليه اسم معيني الأوجه السالب. وعندما نمسك البلورة بحيث يكون المحور ج عموديا والمحور أ2 يمتد موازيا لماسك البلورة فإننا نجد في حالة معيني الأوجه الموجب {هـ هـ ل} وجها علويا في حين يواجهنا معين الأوجه السالب {ك ك ل} بحرف في هذا لامكان.
                  مثلثي الاوجه الثلاثي المزدوج ، شكل (90) ، يتكون هذا الشكل من ستة أزواج من الأوجه المثلثية (غير متساوية الأضلاع) (المجموع اذن 12 وجها) ، وتقفل هذه الأوجه الفراغ. نلاحظ في هذا الشكل البلوري أن الثلاثة أزواج العليا من الأوجه ليست فوق الثلاثة أزواج السفلى مباشرة ، أي لا يوجد بين الاثنين مستوى تماثل أفقي ، وعلى ذلك فلا يكون هذا الشكل هرما منعكسا ثلاثيا مزدوجا ، ولكن يكون مثلثي الأوجه ثلاثي مزدوج. في هذا الشكل يصل المحور ج بين الزوايا السداسية الأوجه (تتكون من تلاقي ستة أوجه) ، أما المحاور الأفقية أ1 ، أ2 ، أ3 ، فإنها تصل بين منتصف الحروف الوسطى المتقابلة ، شكل (91 –أ ، ج).
                  ويمكن أ، ننظر إلى مثلثي الأوجه الثلاثي المزدوج على أنه مشتق من الهرم المنعكس السداسي المزدوج (النظام العادي لفصيلة السداسي) ، إذا اخترنا أزواجا متبادلة من الأوجه ششكل (91 –ب)). (زوج علوي ثم يليه زوج سفلي ثم زوج علوي وهكذا) ، ويمكننا اذن أن نحصل على ثملثي أوجه ثلاثي مزدوج موجب وآخر سالب ، شكل (91 – أ ، ج) . والمثلثي الموجب يشغل موضعا مقابلا لموضع معين الأوجه الموجب ، أما المثلثي السالب فإن موضعه يقابل موضع معيني الأ,جه السالب. واحداثيات مثلثي الأوجه الثلاثي المزدوج هي ± (ن أ: ط أ: أ: م ج) ، والدليل {هـ ك و ل} مثل {1312} ، حيث هـ > ك ، {ك هـ و ل} ، حيث ك >هـ.
                  مجموعات الأشكال
                  توجد مجموعات مختلفة من الأشكال البلورية الثلاثية على البلورات الطبيعية ، شكل (92 ، 93 ، 94).
                  أمثلة من المعادن:
                  يتبلور في هذا النظام الثلاثي الكامل التماثل المعادن التالية: كالسيت ، سيديريت ، كوراندوم ، هيماتيت.
                  مميزات البلورات الثلاثية:
                  تتيمز البلورات الثلاثية (تعرف أيضا باسم البلروات معينة الأوجه) ، بوجود محور ثلاثي التماثل (دوراني أو انقلابي) ، يطبق دائما مع المحور الرأسي ج ، ويكون طول البلورة في هذا الاتجاه إما أكبر أو أصغر من الأبعاد الأفقية (أ1 ، أ2 ، أ3) ، ويأخذ المقطع المستعرض العمودي على المحور الرأسي الثلاثي في البلورات كاملة التماثل غير المشوهة شكلا مثلثي السمة.

                  تعليق


                  • #39
                    فصيلة المعيني القائم Orthohombic System

                    المحاور البلورية

                    تشمل هذه الفصيلة جميع البلورات التي لها ثلاثة محاور متعامدة وغير متساوية ، شكل (95). ويمتد المحور ج راسيا ، بينما يمتد المحور ب من اليمين إلى اليسار ، أما المحور أ ، فإنه يتجه من الأمام إلى الخلف ، ولا يوجد محور أساسي في هذه الفصيلة ، بمعنى أن أي محور يمكن أن يختار ليكون المحور ج. وعادة نختار ج أطول من ب ، ب أطول من أ. وتتكون النسبة المحورية إذن من قيم ثلاث. فمثلا في بلورة الكبريت أ: ب: ج = 0.813: 1: 0.903 ، أما في معدن سلستيت ، فنجد أن النسبة أ: ب: ج = 0.9: 1: 1.280.
                    وتشمل هذه الفصيلة ثلاث نظم موضحة في جدول (8):
                    النظام قانون التماثل الكامل مثال من المعادن الهرم المنعكس المعيني القائم 2 3/م ن باريت Barite BaSO4 الوتد المعيني القائم 2 3 ابسوميت MgSO47H2O الهرم المعيني القائم 2 م م هيميمورفيت Zo4(OH)2Si2O7H2O
                    جدول (8): النظم البلورية في فصيلة المعيني القائم


                    نظام الهرم المنعكس المعيني القائم Orthorhombic Bipyramidal system

                    التماثل:
                    قانون التماثل: 2/م 2/م 2/م ن ، أو 2 3/م ن ، شكل (96).
                    المحاور التماثلية: يوجد ثلاث مستويات تماثلية ، إثنان منها رأسيان والثالث أفقي ، ويشمل كل منها محورين بلوريين ، شكل (96).
                    مركر التماثل: موجود أيضا في بلورات هذا النظام.
                    الأشكال البلورية:
                    هرم منعكس معيني قائم ، شكل (97) ، يتكون هذا الهرم المنعكس من ثمانية أوجه مثلثية الشكل (المثلث غير متساوي الأضلاع) ، ومتشابهة ، وتقفل الفراغ. هرم الوحدة له الاحداثيات (أ: ب: ج) ، والدليل {111} ، أما الأهرامات الأخرى فلها – بصفة عامة – الاحداثيات (ن أ: ب : م ج) ، والدليل {هـ ك ل} ، حيث ك> هـ ، أو لها الأحداثيات (أ ن ب : م ج) ،والدليل {ك هـ ل} ، حيث هـ > ك ، (ن >1 ، 0 > م> ∞).
                    المنشور ، شكل (98) ، شكل مفتوح مكون من أربعة أوجه قاطعة للمحورين أ ، ب ، ولكنها تمتد موازية للمحور ج . دليل منشور الوحدة هو {011} ، أما الأشكال الأخرى من المنشور فلها الدليل {هـ ك 0} ، مثل }012} ، {023} الخ.
                    المسقوف ، شكل (99 ، 100)، شكل مفتوح يشبه السقف المكون من سطحين في هيئة رقم 8 ، يقابلها سطحين آخرين بالعكس ، أي في هيئة سبعة (7) ، وتقطع أوجه المسقوف أحد المحورين الأفقيين والمحور الرأسي ج. يسمى المسقوف الذي يوازي المحور أ (يقطع ب ، ج) باسم الأحداثيات العامة (∞ أ: ب: م ج} ، والدليل {0ك ل} ، مثل {110} ، {120} ، ويتكون من أربعة أوجه.
                    أما المسقوف الذي تمتد أوجهه موازية للمحور ب ، فيعرف باسم مسقوف ب أو مسقوف أمامي ، شكل (100{ ، الأحداثيات (أ: ∞ب: م ج) ، والدليل {هـ ، ل} مثل {101} ، {102} ، ويتكون من أربعة أوجه.
                    يكون كلا الشكلين – المنشور والمسقوف – شكلا مفتوحا ، وعلى ذلك فلا يظهر أحدهما بمفرده ، بلف لابد أن يكون مجموعات مع شكل آخر.
                    المسطوح ، شكل (101) ، وهو شكل مفتوح مكون من وجهين فقط موازيين لبعضها البعض ، ويقطع الوجه أحد المحاور البلورية ويوزاي المحورين الآخرين ، ويعرف المسطوح باسم المحور الذي يقطعه ، فإذا قطع المحور ج فإنه يعرف باسم مسطوح ج ، ويعرف باسم مسطوح ب إذا كان يقطع المحور ب ، أو مسطوح أ إذا كان يقطع المحور أ.
                    مسطوح أ أو مسطوح أمامي {001} ، وجهان
                    مجموعات الأشكال:
                    توجد الأشكال {011} ، {201} ، {110} ، {100} ، مجموعة على بلورة معدن باريت ، شكل (102) ، أما بلورة الأوليفين ، شكل (103) فيوجد عليها الأشكال {111} ، {011} ، {021} ، {101} ، {120} ، {010} ، وفي بلورة الكبريت شكل (104) ، نشاهد الأشكال {111} ، {311} مجموعة:
                    أمثلة من المعادن:
                    يتبلور في هذا النظام المعيني القائم الكامل التماثل عدد كبير من المعادن نذكر منها: الكبريت المعيني (شكل104) ، باريت (BaSO4) ، توباز [Al(F2OH)2 AlSiO4] ، أوليفين [(Mg2Fe)2 SiO2] ، شكل (103).
                    مميزات البلورات المعينية القائمة:
                    تتميز البلورات المعينية القائمة في النظام كامل التماثل بوجود ثلاثة محاور ثنائية التماثل تنطبق على المحاور البلورية أ ، ب ، ج. ونظرا لأن المحور ج في هذه الفصيلة ليس مميزا ثماثليا عن المحورين الأفقيين فقد اتفق علماء البلورات على توجيه البلورة المعينية القائمة بحيث يكون ج> ب >أ ، ولو أنه في الماضي لم يكن هذا الإتفاق موجودا ، وعادة نجد في المراجع السالفة أن أيا من المحاور الثلاثة يتخذ اتجاها للمحور ج ، وأطول الاثنين الآخرين هو المحور ب ، والأقصر هو المحور أ. ويبدو المقطع المستعرض العمودي على المحور الرأسي في البلورات كاملة الأوجه غير المشوهة في شكل ذي سمة مستطيلة أو معينية.
                    فصيلة الميل الواحد Monoclinic System

                    المحاور البلورية
                    تشمل هذه الفصيلة جميع البلورات التي لها ثلاثة محاور بلورية غير متساوية أ ، ب ، ج ، إثنان منها (أ ، ج) ، يتقاطعان في زاوية مائلة (لا تساوي 90 درجة) ، هي زاوية β شكل (105). تمسك بلورة هذه الفصيلة بحيث يمتد الحور ب من اليمين إلى اليسار (مازيا لماسك البلورة) ، ويمتد المحور ج رأسيا ، أما المحور أ فيمتد مائلا إلى الأمام في اتجاه ماسك البلورة. وتعرف الزاوية β بيتا المنفرجة بالزاوية الموجبة أما الزاوية β الحادة فتعرف بالزاوية السالبة. وواضح أن الزاويتنين الموجبة والسالبة متكاملتان (أي مجموعهما يساوي 180 درجة) ، ولما كانت الزاوية β تختف من معدن إلى آخر فإن تعيينها يساعد في التعرف على البلورة ، وبالتالي المعدن ، وذلك بالإضافة إلى تعيين النسبة المحورية أ: ب:ج ، وتعرف هذه العناصر (الزاوية β والنسبة المحورية) باسم عناصر التبلور ، فمثلا عناصر التبلور لمعدن الجيس (CaSO4 2H2o) ، يعبر عنها هكذا أ: ب: ج = 0.690: 1: 0.412 ، لآ = 80.42 درجة.
                    ويلاحظ أن المحور ب _أفقي) هو المحور الأساسي في هذه الفصيلة ، وهو الذي يختار أولا عند توجيه البلورة والمحور ب قد يكون محورا ثنائي التماثل أو متعامدا على مستوى التماثل.
                    وتشمل هذه الفصيلة ثلاثة نظم موضحة في جدول (9):

                    النظام قانون التماثل الكامل أمثلة من المعادن منشور الميل الواحد 2/م ن أرثوكليز KALS3O8 مسقوف الميل الواحد 2 (=م) كلينوهيدريت H2CaZnSiO5 وتد الميل الواحد 2 ناتروليت Na2(Al2Si3O10)H2o
                    جدول (9): النظم البلورية في فصيلة الميل الواحد
                    نظام المنشور المائل Monocline Prismatic Class

                    الماثل قانون التماثل الكامل: 2/م ن شكل (106) ، يوجد في هذا النظام محور واحد ثنائي التماثل ينطبق على المحور ب. وهذا المحور عمودي على مستوى تماثل (يشمل هذا المستوى المحورين أ ، ج) ، ويوجد بالإضافة إلى ذلك مركز التماثل.
                    الأشكال البلورية
                    نصف الهرم المنعكس ، شكل (108 ، 109): نتيجة لوجود مستوى تماثل ومحور ثنائي التماثل فقط ، فإننا نجد أن الشكل البلوري الذي تقطع أوجهه المحاور البلورية في مسافات الوحدة ، أي ذو الأحداثيات أ: ب: ج يتكون من أربعة أوجه فقط. فالأوجه الأربعة التي تقفل الزاوية بيتا الموجبة (+β) [المنفرجة ، شكل (108)] ، تكون نصف هرم الوحدة المنعكس الموجب ، أما الأوجه التي تقفل الزاوية بيتا السالبة (-β) ، شكل (109) ، فإنها تكون نصف هرم الوحدة المنعكس السالب. وووضاح أن أوجه كل من الشكلين الموجب والسالب مختلفة ، فتلك الموجودة في الزاوية الموجبة أكبر. الدليل {111} للموجب ، {111¯} للسالب. هذا بالنسبة لشكلي الوحدة (تقطع أوجههما المحاور البلورية في مسافات الوحدة) ، أما نصف الأهرامات المنعكسة التي تقطع المحاور البلورية في مسافات مختلفة عن الوحدة فإ،ها الادلة العام ، {هـ هـ ل} ، {هـ ك ل} ، {ه ك ل¯} ، {ك هـ ل} ، ك هـ¯ل¯}.
                    المنشور ، شلك (110): عبارة عن شكل مفتوح مكون من أربعة أوجه كما هو الحال في فصيلة المعين القائمة. منشور الموحدة له الدليل {011} ، أما المنشوريات التي تقطع المحورين أ ، ب على مسافات مختلفة عن الوحدة فلها الدليل العام {هـ ك 0} حيث هـ > ك ، مثل {012} ، أو {ك هـ0} حيث ك > هـ مثل { 021}.
                    المسقوف:
                    المسقوف الجانبي أو مسقوف أ: مكون من أربعة أوجه موزاية لمحور أ ، شكل (112) ، الأحداثيات (∞أ : ب: م ج} ، الدليل {0 ك ل}.
                    نصف المسقوف الامامي أو نصف مسقوب ب: بما أن المحور أ مائل من وجهين فقط ، وليس أربعة ، شكل (114 ، 115) ، ولذلك يعرف باسم نصف المسقوف ب. والشكل الذي يحصر الزاوية بيت الموجبة (المنفرجة) يعرف بنصف المسقوف ب الموجب ودليله {هـ ل} ، مثل {101} ، شكل (114) . أما نصف المسقوف ب السالب فهو الذي يحصر الزاوية بيتا السالبة ودليله {هـ ل} ، مثل {101¯} ، شكل (115).
                    المسطوحات ، شكل (111) ، توجد ثلاثة أنواع منها ، مثل سابقتها في فصيلة المعيني القائمة ، وهي:
                    المسطوح القاعدي أو مسطوح ج ، {100} : وجهان.
                    المسطوح الجانبي أو مسطوح ب ، {010}: وجهان.
                    المسطوح الأمامي أو مسطوح أ ، {001}: وجهان.
                    مجموعات الأشكال:
                    توجد أشكال بلورية كثيرة مجموعة على البلورات الطبيعية التي تمثل هذا النظام كما في شكل (116 ، 117 ، 118، 119).
                    أمثلة من المعادن:
                    يتبلور في هذا النظام الكامل التماثل لفصيلة الميل الواحد عدد كبير من المعادن ، من بينها معظم معادن السليكات المكونة للصخور النارية. نذكر منها:
                    أرثوكليز Orthoclase (KALSi8O8) ، شكل (116، 117).
                    أوجيت Augite (Ca Al Fe Mg Silicate) ، شكل (119).
                    هورنلبند Hornblende [Ca Al Fe Mg (OH) silicate].
                    بيتوتيت Biotite [K Al Fe Mg (OH) Silicate].
                    جبس Gypsum (CaSO4. 2H2O) ، شكل (118).
                    مميزات بلورات الميل الواحد:
                    تتميز بلورات الميل الواحد بأن المحور البلوري ب هو المحور الوحيد ثنائي التماثل (متعامد على مستوى تماثلي هذا النظام كامل التماثل) الموجود في هذه البلورات. وفي هذا التوجيه يقع المحوران ج (رأسي) ، أ (مائل نحو ماسك البلورة) في مستوى التماثل الرأسي وهو المستوى الوحيد الموجود في هذه لابلورات. وفي معظم بلورات الميل الواحد يكون المحور ج هو محور استطالة البلورة ، ولكن في حالات قليلة ، مثل الأرثوكليز تستطيل البلورة في إتجاه المحور أ. وبعض المعادن مثل الأبيدوت تستطيل بلوراتها في إتجاه المحور ب. وفي كل بلورات الميل الواحد يلاحظ عموما أن ميل الأوجه البلورية الموازية للمحور يكون ملحظات. وفي حالات نادرة تصل الزاوية بين المحورين أ ، ج مقاربا جدا من 90درجة.










                    فصيلة الميول الثلاثة Triclinic System

                    المحاور البلورية:
                    تشمل هذه الفصيلة جميع البلورات التي لها ثلاثة محاور غير متساوية وغير متعامدة (أي أنها تتقاطع في زوايا مائلة) ، شكل (120) ، وتمسك البلورة بحيث يمتد المحور ج رأسيا. ويمتد المحور ب من اليمين إلى اليسار. أما المحور أ فيمتد إلى الأمام تجاه ماسك البلورة.
                    وتتكون عناصر التبلور من النسبة المحورية أ: ب : ج ، والزوايا الثلاث : ألفا ، بيت ، جاما . فمثلا ، في بلورة رودينيت Rhodonite (MnASiO3) ، نجد أن عناصر التبلور هي ، أ: ب: ج = 1.073: 1: 0.613 ، α = 10.8.18 ، β = 108.44 ، δ = 81.39.
                    وتشمل فصيلة الميول الثلاثة نظامين بلوريين ، كما في جدول (10):
                    النظام قانون التماثل الكامل أمثلة من المعادن مسطوح الميول الثلاثة 1¯ (=ن) ولاستونيت CaSIO8 سطح الميول الثلاثة 1 أكسينيت
                    جدول (10): النظم البلورية في فصيلة الميول الثلاثة

                    نظام مسطوح الميول الثلاثة
                    التماثل: تتكون عناصر التماثل ي هذا النظام من مركز تماثل فقط ، شكل (121). وعلى ذلك فإن أي شكل بلوري تابع لهذا النظام يتكون من وجهين اثنين فقط ، وجه في ناحية من المركز ووجه آخر مواز له في الناحية المقابلة من المركز.
                    الأشكال البلورية:
                    ربع الهرم المنعكس ، شكل (122): بما أن المستويات التي تمر بالمحاور البلورية تقسم الفراغ البلوري إلى أربعة أ.واج من الأقسام غير المتشابهة ، كل قسم عبارة عن ثمن 1/8 الفراغ ، فإنه ينتج على البلورة إذن أربعة أنواع من الأشكال الهرمية. يتكون كل شكل هرمي من وجهين متقابلين فقط ، أو بمعنى آخر يتكون من 1/4 عدد أوجه الهرم المنعكس. ولذلك فإن هذا لاشكل (الذي تقطع أوجهه جميع المحاور البلورية) ، يعرف باسم ربع الهرم المنعكس ، فإذا كانت الأوجه تقطع المحاور البلورية في مسافات الوحدة فإن الشكل بعرف بشكل الوحدة ، أما الأشكال الأخرى فإنه تقطع المحاور البلورية في مسافات مختلفة. وفي عبارة أخرى يمكننا أن نقول أن شكل الهرم المنعكس المعيني القائم قد تحول إلى أربعة أشكال هرمية منعكسة نتيجة لميل المحاور البلورية بالنسبة إلى بعضها البعض. وأدلة هذه الأشكال الأربعة هي: {111} ويعرف باسم الطوي اليميني ، {111¯} العلوي اليساري ، {111¯} السفلي اليمين ، {1¯11¯} السفلي اليساري.ويتوقف الاسم في كل من هذه الحالات الأربعة على مكان الفراغ الأمامي ( والثمن 1/8) ، الذي يقفله وجه الشكل.
                    نصف المنشور ، شكل (123): من الواضح الآن أن المنشورات في هذا لانظام الذي لا يحتوي سوى مركز تماثل فقط تتكون من وجهين اثنين فقط لكل منها ، ولذلك فإنها تعرف باسم نصف منشورات ، ويمكن تمييز نصف منشور يميني {011} ، ونصف منشور يساري {011¯}. وهذه الأشكال مفتوحة. وتوجد في شكل (123) مجتمعة مع المسطوح القاعدي {100}.
                    نصف المسقوف: تتكون المسقوفات الآن من وجهين فقط. وعليه فإننا نتحدث عن نصف المسقوف أ اليمين {110} ، واليساري {110¯} ، شكل (124) ، ونصف المسقوف ب العلوي {101} ، والسفلي {101¯} ، شكل (125) ، والتي تشاهد مجتمعة مع المسطوح الأمامي والمسطوح الجان يبفي الشكلين على التواتلي.
                    المسطوحات ، شكل (126): المسطوح الأمامي أو مسطوح أ {001} ، وجهان ، المسطوح الجانبي أو مسطوح ب {010} ، وجهان ، المسطوح القاعدي أو مسطوح ج {100} ، وجهان.
                    المجموعات الشكلية:
                    يوجد عدة أِشكال بلورية مختلفة مجموعة على البلورات الطبيعية ، شكل (127).
                    أمثلة من المعادن:
                    يتبلور في هذا النظام معاد البلاجيزكليز وهي من المعادن الأساسية في تكوين الصخور النارية ،ومن أمثلتها ألبيت Albite (NaAlASi8O8) ، أنورثيت Anorthite (CaAl2Si2O8) ، شكل (127( ، كذلك تتبلور في هذا النظام معادن رودونتي ولاستونيت.
                    مميزات بلورات الميول الثلاثة:
                    تتميز بلورات الميول الثلاثة بأنها لاتحتوي أيا من المحاور التماثلية أو المستويات التماثلية. وباستثناء معادن الفلسبارات البلاجيوكليزية فإن قلة من المعادن تتبلور في فصيلة الميول الثلاثة ، وعادة ما تكون بلوراتها غير واضحة وغير كاملة الأوجه. أسماء وتوزيع وعلاقة الأشكال البلورية
                    في النظم الكاملة التماثل في الفصائل البلورية السبعة
                    يبين جدول (11) ، فيما يلي أسماء وتوزيع ، وعلاقة الأشكال البلورية في النظم الكاملة التماثل في الفصائل البلورية السبعة التي درسناها:
                    الشكل/ الفصيلة 111 أو 11¯12 110 أو 10¯11 101 أو 10¯11 011 أو 11¯02 001 أو 01¯01 010 أو 10¯01 100 أو 1000 الميول الثلاثة ربع هرم منعكس نصف مسقوف أ نصف مسقوف ب نصف منشور مسطوح أ مسطوح ب مسطوح ج الميل الواحد نصف هرم منعكس مسقوف أ نصف مسقوب ب منشور مائل (( (( (( المعيني القائم هرم منعكس مسقوف أ مسقوف ب منشور معيني قائم (( (( (( الثلاثي هرم منعكس سداسي (2) معيني الأوجه معيني الأوجه منشور سداسي منشور سداسي (( السداسي هرم منعكس سداسي (2) هرم منعكس سداسي (1) منشور سداسي (2) منشور سداسي (1) (( الرباعي هرم منعكس رباعي (1) هرم منعكس رباعي (2) منشور رباعي (1) منشور رباعي (2) (( المكعب ثماني الأوجه الإثنا عشر وجها معينا مكعب
                    عدد المواد المتبلورة في كل فصيلة ونظام بلوري وأهميته النسبية
                    يصل العدد الحالي للمواد المتبلورة المعروفة حوالي 20.000 ، من بينها ألفان توجد في الطبيعة كمعادن ، الكثير منها نادر الوجود ، ومن بين هذا العدد الضخم من المواد المتبلورة نجد أن:
                    50% تتبلور في فصيلة الميل الواحد.
                    25% تتبلور في فصيلة المعيني القائم.
                    15 % تتبلور في فصيلة الميول الثلاثة.
                    وفي عبارة أخرى إن هذه الفصائل الثلاثة (ذات التماثل الأقل بين الفصائل البلورية السبعة) تضم 90% من مملكة البلورات ، تاركة نسبة بسيطة (10%) ، لبقية الفصائل البلورية الأربعة مجتمعة ، والتي يمكن ترتتبيها ترتيبا تنازليا حسب الأهمية النسبية لعدد البلورات التي تتبلور في كل منها كما يلي: المكعب ثم الرباعي ثم الثلاثي ثم السداسي. ويلاحظ أن العدد الأكبر من المواد المتبلورة داخل الفصيلة الواحدة ينتمي إلى النظام الكامل التماثل. ومن أجل تحقيق المواد المتبلورة والتعرف عليها يمكننا أن ننظر إلى مثل هذا التوزيع – وما يبدو من عدم أهمية الفصائل الأعلى تماثلا – على أنه تيسير في صالح تحقيق المواد المتبلورة وليس تعسيرا للأمور. ففي جميع بلورات المواد المكعبية نجد أن الزاوية بينوجهين متقابلين (وجهان لهما نفس الدليلن) ثابتة.ومعنى ذلك أن تعيين الزوايا بين الوجهية في البلورات المكعبية لا يفيد في تحقيق هذه المواد. وكلما انخفض التماثل زاد عدد المتغيرات ، حتى أننا في فصيلة الميول الثلاثة (أقل الفصائل تماثلا) ، نجد أن أقل عدد من الزوايا بين الوجهية (وهي متغيرة) ، غير المرتبطة ببعضها ينبغي التعرف عليها من أجل تعيين الزوايا المحورية الثلاثة (ألفا ، بيتا ، جاما) ، وكذلك النسبة المحورية ( وبالتلاي تحقيق المادة) هو خمسة.

                    هيئة البلورة Crystal Habit
                    سبق أن ذكرنا أن المعدن يتميز بشكل بلوري ثابت ، وعلى هذا يختلف معدن عن آخر في الزوايا بين الوجهية ، وكذلك في تماثل الأشكال البلورية ، أي في نظام توزيع الأوجه على البلورة حسب عناصر التماثل المميزة في البلورة. وتعتبر هذه الاختلافات (في الزوايا والتمثل) أساسية في التمييز بين بلورة وأخرى ، كما أنها تمثل الفوارق الهامة بين الفصائل البلورية السبعة التي ذكرناها. أما الاختلافات الأخرى التي تظهر علىالبلورات فليست من الأهمية بمكان مثل هذه الاختلافات الجهورية . ونعني بالاختلافات الأخرى اختلاف حجم البلورات والاختلاف في التكوين النسبي للأوجه البلورية ، وعددها ، وكذلك نوع هذه الأوجه ، أو الأشكال البلورية الموجودة على البلورة ، وقد سبق أن عرفنا التكوين المختلف لأوجه الشكل البلورية الواحد باسم التشوه أو اختلاف الأوجه البلويرة ، شكلا (14 ، 15) ، وتوصف البلورة في هذه الحالة بأنها مشوهة أو مختلفة الأوجه. ويجب ألا ننسى أن مثل هذا التشوه لا يؤثر على الزوايا بين الوجهية ، لأ، هذه الزوايا ثابتة مادام ميل الأوجه البلورية ثابت ولا يهم بعد ذلك إذا كبر الوجه أو صغر.
                    وقد لوحظ أن بلورات المادة الواحدة تختلف عن بعضها البعض في حجم الأوجه ونسبة تكوينها ، وكذلك في عدد ونوع الأوجه والأشكال الموجودة على البلورات. ومن المشاهدات العامة أنه إذا نمت البلورة (كلورات الصوديوم مثلا) في محلول ، أثناء عملية التبلور داخل كأس مثلا ، وكان نموها على القاه ، فإنها لا تجد حرية في النمو إلى أسفل حيث تصطدم في قاع الكأس ، ولا يوجد محلول تنمو منه ولكنها تنمو إلى الجانبين وإلى أعلى بحرية. وتنتج لنا في هذه الحالة بلورة مسطحة أو مبططة ، أما إذا علقت هذه البلورة في المحلول فإنها تنمو بالتساوي في جميع الاتجاهات وتأخذ شكلا مكعبا. ويعرف الشكل الذي تظهره البلورة للعين باسم هيئة البلورة . ولا تتوقف هيئة البلورة على طبيعة المادة المكونة لها فحسب ، ولكنها تتوقف أيضا على الظروف التي أحاطت بالبلورة أثناء نموها. ومن ذلك يمكننا ان نقول أن هيئة البلورة تصف التكوين النسبي للأوجه أو الأشكال البلورية وكذلك عددها ونوعها. ويجب ألا يغيب عن ذهننا أبدا أن مثل هذا التغيير في هيئة البلورة يحدث دون أن يتبعه أي تغيير – حتى ولو كان طفيفا – في الزوايا بين الوجهية.
                    ويمكن وصف الهيئة البلورية للمعادن إما بالنسبة للشكل الظاهري وما يشابه ، كأن تكون ابرية أو عمدانية أو مسطحة .. الخ ، أوبالنسبة للشكل البلوري الغالب في تكوين البلورة مثل هرمية أو منشورية أو مسطوحية .. الخ ونذكر فيما يلي الألفاظ الشائعة في وصف هيئة البلورة ، شكل (14).
                    متساوية أو متساوية الأبعاد ، وذلك عندما تكون جميع الأوجه البلورية متساوية في الحجم تقريبا ، مثل الجرنت.
                    مسطحة أو نضدية ، وذلك عندما يكون هناك زوج من الأوجه أكبر بكثير من الأوجه الأخرى وتبدو البلورة ، في هذه الحالة "مبططة".
                    صفائحية ، أو حتى ورقية ، وذلك عندما يصل "التبطيط" ، إلى درجة كبيرة فتصبح البلورة في سمك الورقة.
                    عمداينة ، وذلك عندما نجد على البلورة ثلاثة أوجه أو أكثر موازية لاتجاه مشترك فيما بينها – قد أصبحت أكبر بكثير من أية أوجه أخرى ، أو بمعنى آخر عندما نجد البلورة طويلة ، أي أن النمو البلوري كان غالبا في اتجاه واحد ، مثل تورمالين.
                    ابرية أو أليافية ، وذلك عندما تبلغ استطالة البلورة نهايتها (وتشبه الإبرة ، مثل بعض أنواع هونبلند أو الألياف ، مثل أسبتوس). وإننا نجد أن بلورات أي فصيلة من الفصائل البلورية يمكن أن يكون لها آية هيئة من الهيئات المذكورة أعلاه ، أي قد تكون متساوية أو مسطحة أو صفائحية أو عمدانية أو ابرية ، ولكننا نلاحظ أن البلوريات المكعبية تكون غالليا ذات هيئة متساوية.
                    وتوصف هيئة البلورة أيضا بالنسبة إلى الأشكال البلورية التي توجد أوجهها كبيرة ظاهرة على البلورة ، وغالباة على بقية أوجه الأشكال الأخرى. فمثلا ، قد تكون البلورات المكعبة مكعبة الهيئة أو ثمانية الأوجه أو اثنى عشر وجها معينا. وبلورات الرباعي قد تكون هرمية الهيئة أو منشورية أو مسطوحية. أما في فصيلتي السداسي والثلاثي فقد تكون البلورات هرمية أو منشورية أو مسطوحية أو معينية الأوجه أو مثلثية الأوجه مزدوجة. وفي بلورات المعيني القائمة والميل الواحد والميول الثلاثة قد تكون الهيئة البلورية هرمية أو منشورية أو مسقوفية أو مسطوحية. وعندما تنتهي البلورة المنشورية بأوجه بلورية من ناحية واحدة فقط فإنها توصف بأنها ذات طرف واحد أن أما اذا انتهت البلورة المنشورية بأوجه بلورية من الناحيتين فإنها توصف بأنها ذات طرفين.


                    مجموعات البلورات Groups of Crystals
                    توجد بعض المعادن في الطبيعة في هيئة بلورات مفردة أو وحيدة ، ولكن الغالبية العظمة من المعادن توجد بلوراتها مجتمعة في هيئة مجموعات ، قد تكون منظمة في ترتيبها أو غير منظمة. ومن دراستنا السابقة يمكن تعريف البلورة بأنها جسم عديد الأوجه ، فيه الزوايا بين الوجهية أقل من 180 درجة فإذا وجدنا على المادة المتبلورة زاوية داخلة ، شكل (129) ، (130) ، أي زواية تكونها أوجه بلورية متجهة إلى الداخل ، فإن هذا يعتبر دليلا على وجود أكثر من بلورة واحدة مشتركة في هذه المادة المتبلورة. أي أن هذه المادة المتبلورة تتكون من مجموعة من البلورات ، وليست بلورة واحدة.
                    وتصنف مجموعات البلورات إلى قسمين حسب التركيب الكيميائي لأفرادها، فإذا كانت تتكون من بلورات ذات تركيب كيميائي واحد فإنها تعرف باسم مجموعة متجانسة ، أما إذا كانت مكونة من بلورات مختلفة التركيب الكيميائي (وبالتالي مختلفة المعادن) ، فإنها تعرف باسم مجموعة غير متجانسة.
                    مجموعاة متجانسة (جميع بلوراتها مكونة من مادة واحدة):
                    تضم ثلاث أقسام حسب ترتيب البلورات والعلاقة الهندسية بينها ، وهي:
                    1- مجموعات البلورات المتوازية. وذلك عندما تكون البلورات موازية لبعضها البعض. 2- بلورات توأمية أو توأم ، وذلك عندما تكون البلورات موازية جزئيا لبعضها البعض (أي بعض المحاور البلورية متوازية والبعض الآخر غير متوازي). 3- مجموعات البلورات غير المنتظمة وهذه ينقصها توازي أفرادها.
                    مجموعات غير متجانسة (بلوراتها مكونة من مواد مختلفة): 1- مجموعات البلورات النطاقية ، هذه تتوازى أفرادها. 2- مجموعات البلورات المنتظمة ، عندما تتوازى الأفراد جزئيا. 3- مجموعات البلورات غير المنتظمة ، وهذه ينقصها توازي أفرادها.
                    المجموعات البلورية المتجانسة (1) مجموعات البلورات المتوازية: تتكون مثل هذه المجموعات عادة من عدة بلورات بدلا من بلورتين اثنتين فقط. وفيها تجد أن البلورات توازي بعضها البعض ، ومن أمثلتها مجموعات البلورات المتوازية لمعدن الكوارتز (شكل 128) ، والكالسيت. وكذلك توجد هذه المجموعات المتوازية من البلورات كنشوءات صغيرة على أوجه بعض البلورات ، وتعرف باسم أوجه ذات نتوءات ، كما يوجد في بلورات معدن فلوريت . (2) البلورات التوأمية أو التوائم: يطلق اسم توأم أو بلورات توأمية على بلورتي المادة الواحدة اللتين تكونان مجموعة وتظهران متوازيتين توازيا جزئيا. ويحتفظ كل جزء من التوأم باتجاهات محاوره البلورية الخاصة ، ولكن يرتبط كل من هذه الاتجاهين بلوريا باتجاه الآخر ، شكل (129 ، 130) . وهذا الارتباط يمكن فهمه بسهولة إذا نحن تصورنا أن أحد جزئي التوأم قد دار زاوية مقدرها 180 درجة حول محور أو اتجاه ما لينطبق اتجاه هذا الجزء من اتجاه الجزء الآخر ، ونلاحظ أن هذا المحور أو الاتجاه يظل مشتركا بين جزئي التوأم (هذا المحور عمودي على الوجه (001) في حالة البلورة شكل 129) ، ويعرف مثل هذا الاتجاه باسم المحور التوأمي . وعادة يكون هذا المحور التوأمي عبارة عن محور بلوري أو عمودي على أحد الأوجه البلورية. وعملية الدوران حول المحور التوأمي هي عملية تخيلية بحتة ، إذ يجب ألا يغيب عن ذهننا أن البلورة المركبة قد نمت على هذه الحالة التوأمية وتحدد فيها اتجاه كل من الجزأين منذ بدء العبداية. ونلاحظ في شكل (129) أن هناك زوايا داخلة ، تميز هذه التوائم. أما البلورة المفردة فإنها تظهر زوايا خارجة (تطل إلى الخارج) فقط. وقد يرتبط اتجاه كل من جزئي التوأم بواسطة مستوى ينعكس خلاله أحد الجزئين لينتج الجزء الآخر (مثل مستوى التماثل) ، شكل (132) ، ويعرف هذا المستوى باسم المستوى التوأمي . أما مستوى التركيب فهو المستوى الذي يبدو فهي جزئي التوأم ملتصقان ، وهو ينطبق على المستوى التوأمي ولكن ليس هذا دائما.
                    وتعرف التوأم دائما بواسطة قانون يذكر فيه ما إذا كان هناك محور توأمي أو مستوى توأمي ، وكذلك الاتجاه البلوري لهذا المحور أو ذاك المستوى.
                    وهناك صفات مختلفة للتوائم ، فمثلا إذا كانت بلورات التوأم ملتصقة بواسطة مستوى التركيب الذي يبدو سطحا مستويا فإن التوأم تعرف في هذه الحالة باسم توأم ملتصقة ، شكل (129 ، 132). أما إذا كان سطح الإلتصاق سطحا غير مستو ، أي تبدو بلورات التوأم متداخلة فإن التوأم في هذه الحالة تعرف باسم توأم متداخلة ، شكل (133) ، مثل توأم معدن فلوريت . والتوأم إذا تكون مفردة أو مضاعفة ، فالتوأم المفردة هي التي تتكون من جزئين اثنين فقط ، شكل (130) ، وهو يمثل توأم معدن الجبس ، أما التوائم المضاعفة فهي التي تتكون من أكثر من جزئين. والتوأم المضاعفة إما أن تكون عديدة التركيب ، شكل (134) ، توأم معدن البيت ، وذلك عندما تكون مستويات التركيب بين أفرادها متوازية. وإما أن تكون مستويات التركيب بين أفرادها ماثلة في هيئة دائرية شكل (135) ، توأم معدن أراجونيت – ذلك عندما تكون مستويات التركيب ستورليت ، ويمثل شكل (137) توأم في شكل "الركبة" لمعدن كاسيتريت (SnO2).

                    تعليق


                    • #40
                      (3) مجموعات البلورات المتجانسة غير المنتظمة: وهذه كثيرة الانتشار في الطبيعة حيث تبدو البلورات في المجموعة غير منتظمة ، مثل بلورات الكوارتز التي تتواجد في العروق ، وقد تكون البلورات منظمة إلى حد قليل حتى لتبدو المجموعة في هيئة وردة صغيرة ، أو كرة صغيرة. وبجانب تواجد مثل المجموعات البلورية المتجانسة غير المنظمة في العروق فإنها توجد أيضا في اللوزات التي توجد مالئة للققافيع في الصخور البركانية.
                      (ب) مجموعات البلورات غير المتجانسة:
                      (1) مجموعات البلورات النطاقية: في هذه المجموعات تنمو بلورات المعادن المختلفة في تركيبها الكيميائي موازية لبعضها البعض ، وفي المادة تحيط البلورات بعضها ببعض أثناء النمو ، حتى أنها لتبدو في القطاع المستعرض كنطاقات أو أحزمة حول بعضها. وهناك شرطا أساسي يجب توافره بين المعادن المختلفة لتكوين المجوعات المتوازية (البلورات النطاقية) وهو أنه لابد أن تكون بلورات هذه المعادن متشابهة في أطوال محاورها البلورية ، وفي الزوايا بين الوجهية ، أي لابد أن تكون بلورات هذه المعادن أو المواد الكيميائية متشابهة البناء (لها نفس الترتيب الذري). فمثلا إذا علقنا بلورة من الشبة الكرومية (كبريتات الكروميوم والألومنيوم المائية) ذات اللون الاخضر الداكن في محلول مركز من الشبة البوتاسية (كبريتات البوتاسيوم والألومنيوم المائية) ذات اللون الشفاف ، فإننا نشاهد البلورة الخضراء وقد أحيطت ببلورة شفافة من الشبة البوتاسية.
                      وقد يوجد أكثر من نطاقين في البلورة النطاثية . وفي جميع الحالات تتشباه المواد المختلفة الداخلة في تكوين البلورات النطاقية في بنائها الذري وشكلها البلوري الخارجي ، مثل هذه البلورات النطاقية كثيرة الظهور في الطبيع. ومنتشرة بين المعادن المختلفة ذات خاصية التبلور المتادخل (أي تكوين بلورات متاجنسة تحتوي على عناصر كثيرة ناتجة عن مقدرة بعض العناصر أن تحل مكان جزءا أو كل من عناصر أخرى). ولا يحدث التبلور المتداخل إلا بين المواد المتشابهة البناء والمتشابعة الشكل ، ومن أمثلتها معادن البجيوكليز (إحلال الصوديوم محل الكالسيوم أو العكس) ، ومعادن البيروكسين (سليكات حديد ومغنسيوم وكالسيوم وألومنيوم وصوديوم .. الخ) ، ومعادن الأمفيبول والتورمالين.
                      (2) مجموعات البلورات المنتظمة: وفي هذه المجموعات نجد توازيا جزئيا بين اتجاهات البلورات المختلفة ، بمعنى أن بعض المحاور البلورية متوازي والبعض الآخر غير متوازي. فمثلا قد توجد بلورات من معدن الروتيل محاطة ببلورة معدن ميكا بحيث يكون اتجاه المحور ج في الروتيل موازي لاتجاه المحاور الأفقية في الميكا.
                      (3) مجموعات البلورات غير المنتظمة: وهذه المجموعات تضم بلورات معادن مختلفة وذات اتجاهات مختلفة أيضا. وهذا النوع أكثر الأنواع انتشارا وشيوعا بين مجموعات البلورات المختلفة ، فهو الذي يوجد مكونا لكثيرمن الصخور.
                      مجموعات المعادن المتبلورة Crystalline aggregates
                      توجد كتل المعادن في الطبيعة في هيئة مجموعات لوحدات (حبيبات) لها بناء ذري منتظم ولكن ينقصها الأوجه البلورية ، وعلى ذلك فإن هذه الكتل هي مجموعات معدنية متبلورة ، وتأخذ هذه المجموعات في الطبيعة أشكالات مختلفة (ولو أن الحبيبات المكونة ليس لها أي شكل بلوري خارجي). ومن أمثلة هذه الأشكال ما يأتي ، شكل (138):
                      1- أليافية ، ابرية ، عمدانية ، عندما تكون حبيبات المعدن مجموعة في هيئة ألياف (اسبستوس) أو ابر (جبس) أو أعمدة (تورمالين). 2- صفائحية : عندما تكون حبيبات المعدن مجموعة في هيئة صفائح. 3- ميكائية: بلورات المعدن مرصوصة في هيئة ألواح رقيقة جدا ، مثل معادن الميكا. 4- كروية: مجموعات حبيبات المعدن في شكل كرات صغيرة. 5- بطروخية: عندما تكون كتلة المعدن مكونة من حبيبات مستديرة صغيرة تشبه البطارخ (بيض السمك) ، مثل بعض أنواع الهيماتيت. 6- باسلاتئية: عندما تكون في هيئة حبيبات البسلة. 7- حبيبية: عندما تكون حبيبات المعدن في شكل حبيبات مستديرة كبيرة كانت أو صغيرة. 8- نتوئية: عندما يغطي سطح المعدن ببلورات دقيقة بارزة أو ناتئة عليه. 9- عنقودية: مجموعة مكونة من كرات صغيرة ملتصقة ببعضها البعض وتشبه عنقود العنب ، مثل بعض أنواع الكالسيدوني (SiO2). 10- كلوية: كتل مستديرة من المعدن ملتصقة ببعضها البعض ، كل واحدة منها تشبه الكلية ، مثل بعض أنواع الهيماتيت. 11- شجرية: عندما تصبح المجموعة في شكل شجرة متفرعة ، مثل بعض أنواع البيرولوسيت (MnO2). 12- مجمية أو شعاعية: عندما تكون الوحدات المعدنية المكونة للمجموعة في هيئة أشعة دائرية ، مثل وفيلليت [Al8(OH)8(PO4)2.5H2O]. 13- نصلية: مجموعة من وحدات مبططة في شكل نصل السكين ، مثل كيانيت (Al2SiO5). 14- استلاكيتية: كتل في هيئة مخروط أو اسطوانة ، مثل بعض أنواع الكالسيت. 15- كتلية: المادة المكونة للمعدن في هذه الحالة مضغوطة أو مكبوسة في هيئة كتلة ليس لها شكل معين. 16- درنية: عندما تتجمع حبيبات المعدن بالترسيب حول نواة لتكون كتل كروية الشكل تقريبا. 17- نرجيلات: عندما تبطن حبيبات المعدن إحدى الفجوات الكروية تقريبا من الداخل ، فإنه يطلق على هذه الكرة المفرغة من الداخل اسم نرجيلة. وغالبا المعدن مصفوفا في صفوف نتيجة لتعاقب ترسيبها. 18- لوزية: كتلة في شكل اللوزة ، كما في معادن الزيوليت عندما تملأ حبيباتها الفجوات اللوزية الشكل (الناتجة من هروب الغازات والأبخرة) في الطفوح البركانية. 19- عدسية: عندما تكون المجموعة في هيئة عدسة. 20- خيطية: عندما تتكون المجموعة من أسلاك رفيعة ، عادة ماتكون منحنية أو منثنية ، مثل الفضة. 21- شعرية: عندما تتكون المجموعة من بلورات رفيعة جدا مثل الشعر. 22- معرقية أو شبكية: عندما تتكون المجموعة من ألياف متشابكة في هيئة شبكة ، مثل الفضة.

                      تعليق


                      • #41
                        الباب الثالث: الخواص الكيميائية للمعادن Chemical prosperities of Materials=

                        قلنا إن المعدن يتميز بتركيب كيميائي خاص ، فقد يكون عنصرا (قلة) أو مركبا كيميائية (كثرة). وتعتبر معرفة التركيب الكيميائي للمعادن ذات أهمية كبرى في دراستنا لها. إذ تتوقف طبيعة المعدن ، وخواصه المختلفة إلى درجة كبيرة على تركيبه الكيميائي. ويمكن التعرف على كثير من المعادن بسهولة بواسطة خواصها الفيزيائية والكيميائية معا ، ويمكن تعيين العناصر الأساسية في تركيب المعدن بسرعة بواسطة طرق لهب البوري أو أنبوبو النفخ ، وهذه الطرق لا تستلزم جميع الأجهزة والكيماويات الموجودة في معمل كيميائي ، ولكن تتكون أهم أجهزتها من أجهزة بسيطة.
                        التحليل الكيميائي بلهب البوري Analysis by the Blowpipe
                        يهدف التحليل الكيميائي بلعب البوري إلى التعرف على بعض أو كل العناصر الداخلة في تركيب المعدن عن طريق عمليات كيميائية جافة. يساعد هذا التحليل في تحقيق المعدن – أو على الأقل تحقيق مكوناته الكيميائية الرئيسية – بطريقة سريعة. ولا تحتاج هذه العمليات الكيميائية إلى أجهزة معقدة ، ولكن – في معظمها – أجهزة بسيطة. يمكن توفيرها في المختبر (المعمل) أو الحقل. إذ لا تتطب سوى ما يأتي:
                        1- مصدر للحرارة مثل مصباح بنزن أو مصباح كحول أو حتى لهب شمعة ، ويمكن التحكم في حرارة اللهب برفع درجة حرارته ، وذلك عن طريق خلطه بالأكسجين (الهواء) عن طريق النفخ أو أنبوب النفخ Blowpipe ، شكل (139). ويستعمل لهب البوري إما لإعطاء أكسدة سريعة للمعدن عند النقطة "أ" في الطرف الخارجي لللهب ، شكل (142) ، أو اختزال سريع للمعدن ، وذلك بوضعه عند النقطة "ب" في الجزء الداخلي من اللهب ، شكل (142). ويمكن سحب طرف البوري قليلا من اللهب إلى الخارج لإعطاء لهب مختزل. ويستلزم الأمر عادة شيئا من الخبرة للحصول على لهب مستمر وقوي بالنفخ. وتصل درجة حرارة البوري إلى ما يقرب من 1500 درجة مئوية. 2- حامل لمسحوق المعدن ، وقد يكون مكعبا من الفحم ، (شكل 144 ، 145) ، أو مسطحا من الجبس ، أو ملقاطا طرفيه مكسوتين بالبلاتين ، أو سلك بلاتين بيد من زجاج ، شكل (143) ، أو أنبوبة زجاجية رفيعة مفتوحة الطرفين "الأنبوب المفتوح" شكل (140) ، أو مفتوحة من طرف واحد فقط "الأنبوب المقفول" شكل (141). ويمثل شكل (146) مجموعة الأجهزة المستخدمة في طرق التحليل الكيميائية باستعمال لهب البوري. 3- بضع مواد كيميائية بعضها صلب والبعض الآخر محاليل. والغرض من استخدام هذه المواد الكيميائية يمكن تلخيصه فيما يلي: أ*- المساعدة في صهر المعدن عند تسخينة ، أي أنها مواد مصهرة مثل البوراكس (بورات الصوديوم المائية) ، والملح الميكروكوري (فوسفات الصوديوم والأمونيوم الإيدروجينية المائية) ، وكربونات الصوديوم. ب*- بعض الأحماض المعدنية مثل حامض الهيدروكلوريك وحامض النيتريك وحامض الكبريتيك ، للكشف عن الشق الحامضي ، وكذلك محاليل من مولبدات الأمونيوم وكلوريد الباريوم وايدروكسيد الكالسيوم ونترات الكوبالت وفوق أكسيد الأيدروجين ، بعض المواد الصلبة مثل حبيبات القصدير ومسحوق المغنسيوم اللازمة لإجراء بعض التجارب الكيميائية التحليلية البسيطة التي تحقق وجود بعض العناصر. وفيما يلي بيان بالإختبارات والتحاليل الكيميائية بلهب البوري التي سنصفها بإيجاز (معظمها في هيئة جداول): 1- ألوان اللهب الناتجة من التسخين على سلك البلاتين ، جدول (12). 2- التسخين على مكعب الفحم: (1) تكوين الفلز بالإختزال ، جدول (13) ، (ب) تكوين الأكسيد والمواد المتسامية بالأكسدة ، جدول (14). 3- التسخين على مسطح الجبس (تكوين اليوديد المتسامي) ، جدول (15). 4- التسخين في الأنوبة المفتوحة (تيار هواء مؤكسد) ، جدول (16). 5- التسخين في الأنبوبة المقفولة (تيارد هواء مختزل) ، جدول (17). 6- اختبارات خرزة البوراكس ، جدول (18). 7- اختبارات الكشف عن الشق الحامضي ، جدول (19). 8- اختبارات خاصة: التفرقة بين الأراجونيت والكالسيت ، الكالسيت والدولوميت ، تحقيق الكاسيتريت. 9- ملخص اختبارات الكشف وتحقيق الفلزات المكونة للمعادن (مرتبة أبجديا) ، وهي: ألومنيوم ، أنتيمون ، باريوم ، بوتاسيوم ، قصدير ، كالسيوم ، كروميوم ، مغنسيوم ، مولبيدنوم ، نيكل ، يورانيوم.
                        1- ألوان اللهب الناتجة بالتسخين على سلك بلاتين:
                        تنتج هذه الألوان ، جدول (12) ، عند تسخين مسحوق المعدن ، إما بمفرده أو مبللا بحامض الهيدروكلوريك ، أو حامض النيتريك أو حامض الكبريتيك ، على طرف سلك البلاتين ، شكل (143) ، حيث تلون الجزء الخارجي من اللهب. وفي حالة المعادن التي لا تتحلل بسهولة (مثل معادن السليكات) يحتاج الأمر إلى صهر المعدن المطحون جيدا مع حجم مساو له من الجبس أو الفلوريت أو بيكبريتات البوتاسيوم على سلك البلاتين.
                        لون اللهب المادة (العنصر المسبب للون) ملاحظات أحمر طوبي كالسيوم Ca باستعمال مرشح ضوء أخضر لا يظهر أي لون. أحمر قرمزي استرونشيوم Sr باستعمال مرشح ضوء أخضر يبدو اللون أصفر باهتا. تعطي محاليل الاسترونشيوم راسبا أبيض إذا أضيف إليها حامض الكبريتيك (فرق بينها وبين الليثيوم) أحمر قرمزي كثيف ليثيوم Li باستعمال مرشح ضوء أخضر لا يظهر أي لون. أصفر صوديوم Na واضح ومميز. بنفسجي بوتاسيوم K يتأثر اللون بوجود الصوديوم ، وباستعمال مرشح ضوء أزرق يبدو اللون أحمر مائلا إلى الزرقة. أخضر مائل للإصفرار باريوم Ba معادن الباريوم ذات وزن نوعي عالي. أخضر نحاس Cu لون اللهب أخضر زمردي باستعمال حامض النيتريك وأخضر مشوبا بلون أزرق سماوي باستمعال حامض الهيدروكلوريك. ألوان زرقاء غير مميزة رصاص Pb تتكون كرات الرصاص بالاختزال على مكعب الفحم. زرنيخ As تنتشر رائحة الثوم أثناء احتراق المعدن أنتيمون Sb ألوان خضراء زنك Zn فسفور P أيضا موليبدنوم Mo
                        جدول (12): ألوان اللهب والعناصر المسببة لها


                        2 (أ) – التسخين على مكعب الفحم (تكيون الفلز بالاختزال): الكرة الصغيرة العنصر ملاحظات بيضاء ، (طرية) ، غير مطفية عندما تبرد الفضة Ag للتمييز بين الفضة والقصدير ، أذب في حامض النيتريك ثم أضف حامض الهيدروكلوريك للحصول على راسب أبيض من كلوريد الفضة. بيضاء ، (طيرة) ، طفية عندما تبرد ، قابلة للطرق ، لا تترك أثرا على الورق القصدير Sn يحصل على الكريات بصعوبة ، وقد تتأكسد في حامض النيتريك إلى الإيدروكسيد الأبيض رمادية (طرية) ، لامعة في اللهب المختزل سهلة الإنصهار ، تترك أثرا على الورق الرصاص pb للتمييز بين الرصاص والقدصير أذب في حامض النيتريك ثم أضف حامض الكبريتيك لتحصل على راسب أبيض من كبريتات الرصاص. صفراء (طرية) ، تبقى لامعة قابلة للطرق الذهب Au يسهل الحصول على الكريات من التيلورديات. حمراء (طيرة اسفنجية) ، سوداء عندما تبرد النحاس Cu يجب تحميص معادن النحاس المحتوية على الكبريت أو الزرونيخ أو الأ،تيمون قبل اختبارها على مكعب الفحم. كريات ضعيفة المغناطيسية كوبالت Co نيكل Ni اختبارخرزة البوركس أزرق عميق. اختبار خرزة البوركس بني مائل. كريات قوية المغناطيسية حديد Fe اختبار خرزة البوركس صفراء ساخنة وعديمة اللون باردة في اللهب المؤكسد.
                        جدول (13): الكريات الفلزية المتكونة بالاختزال على مكعب الفحم وذلك بخلط المعدن بمسحوق الفحم وكربونات الصوديوم والتسخين في لهب البوري المؤكسد.






                        2 (ب) – التسخين على مكعب الفحم (تكوين الأكسيد والمواد المتسامية): بالقرب من المعدن المؤكسد وهي ساخنة الحافة الخارجية للمادة المتسامية المادة ملاحظات أبيض نقي مائل للإحمرار أبيض أكسيد السيلينيوم (أحمر) سيلينيوم (أبيض) تلون المادة المتسامية اللهب المختزل باللون الأزرق أبيض كثيف رمايد إلى بني أكسيد الثلوريوم (أبيض) تلروريوم (رمادي) تلون المادة المتسامية اللهب المختزل باللون الأخضر الباهت أبيض كثيف أشهب إلى بني أكسيد أنتيمون تتكون بكثرة بالقرب من المعدن المتأكسد (أقل تساميا من أكسيد الزرنيخ) أبيض أبيض إلى أشهب أكسيد الزرنيخ تتكونب بكثرا بعيدا عن المعدن المتأكسد (له رائحة الثوم) أبيض أبيض إلى أزرق كلوريدات النحاس والرصاص والزئبق والأمونيون والقلويات أصفر خفيف جدا (أبيض في البارد) أبيض خفيف جدا أكسيد القصدير المادة المتسامية يصبح لونها أخضر يميل إلى الزرقة إذا بللت بنترات الكوبالت ثم سخنت بشدة لون النحاس الأحمر أبيض أكاسيد الموليديوم تتحول المادة إلى لون أزرق إذا سخنت في اللهب المختزل أصفر قاتم أبيض يميل للزرقة أكسيد الرصاص تتكون مادة متسامية خضراء مائلة للصفرة إذا سخنت مع بوديد البوتاسيوم أصفر كناري (أبيض في البارد) أبض خفيف جدا أكسيد الزنك تصبح المادة المتسامية خضراء إذا بللتب نترات الكوبالت وسخنت بشدة أحمر إلى أحمر فاتح فضة مختلطة مع رصاص وأنتيمون تتحول الفضة بالتسخين الشديد لفترة طويلة إلى مادة متسامية لونهاب ني خفيف
                        جدول (14): المواد المتسامية على مكعب الفحم الناتجة من تسخين المعدن في اللهب المؤكسد.




                        4- إختبارات التسخين على مسطح الجبسي (مواد اليوديد المتسامية):
                        في بعض الأحيان سكون لليوديدات مظهر مختلف تماما عن ذلك الذي تأخذه الأكاسيد. وللحصول على اليوديد المتسامي فإنه يلزم طحن المعدن طحنا جيدا ثم يبلل بحامض الهيدروأيوديك (HI) ، أو يخلط بمادة صاهرة مكونة من جزئين بالتساوي من يوديد البوتاسيوم (KI) ، وبيكبريتات البوتاسيوم (KHSO4). ثم يسخن المخلظ على مسطح الجبس (يمكن استعمال مكعب الفحم كحامل لها). حيث تتكاثف طبقات رقيقة من اليوديد المتسامي ذي الألوان العديدة على الأجزاء الباردة من السطح ، جدول رقم (15):
                        بالقرب من المعدن المسخن الحافة الخارجية المادة ملاحظات أصفر برتقالي أصفر برتقالي يوديد الرصاص متسامية. أصفر إلى برتقالي أصفر إلى برتقالي يوديد الزرنيخ متسامي جدا. برتقالي إلى أحمر برتقالي إلى أحمر يوديد الأنتيمون يختفي عند تعرضه لأبخرة الأمونيا القوية أسود إلى أصفر مطفي أصفر إلى قرمزي يوديد الزئبق يحتاج إلى تسخين بشدة أحمر إلى قرمزي أحمر إلى قرمزي يوديد السيلينيوم متسامي وأبخرته حمراء بني مائل للاحمرار بني مائل للاحمرار يودي البرموت تحول أبخرة الأمونيم لونه إلى أصفر ثم إلى أحمر بني يشوبه إحمرار باهت بني داكن يوديد التلوريوم متسامي أزرق بحري داكن يوديد الموليدنوم
                        جدول (15): مواد اليوديد المتسامية على سطح الجبس

                        (3) إختبارات التسخين في الأنبوبة المفتوح Open tube tests:
                        تستعمل في هذه التجربة أنبوبة زجاجية قطرها الداخلي حوالي نصف سنتيمتر وطولها حوالي 12 سم. ويجب أن تكون هذه الأنبوبة منثنية قليلا بالقرب من أحد طرفيا ، شكل (140) ، لحمل مسحوق المعدن على هذه الثنية. وتستعمل مثل هذه الأنبوبة المفتوحة الطرفين في إختبارات الأكسدة التي تطرأ على المعدن عند تسخينه وتسامي بعض الأكاسيد الناتجة وتكثفها على جدران الأنبوبة الداخلية بعيدا عن المعدن المطحون. وتمسك الأنبوبة مائلة أكبر ميل بقدر الإمكان ويسخن الجزء العلوي فوق المعدن ثم السفلي بواسطة لهب البنزن فيسخن الهواء وكذلك المعدن وتعمل الأنبوبة كمدخنة يمر بها تيار مستمر من الهواء الذي يؤكسد المعدن المطحون وتتحول بعض مكوناته إلى أكاسيد غازية أو طيارة يخرج بعضها من طرف الأنبوبة ويتكثف البعض الآخر قرب هذا الطرف عند الجزء البارد من الأنبوبة. وبدراسة خواص لون المادة المتسامية المرتسبة يمكن معرفة العناصر المكونة للمعدن. ويبين الجدول رقم (16) خواص هذه المواد المتسامية المرتسبة في الأنبوبة المفتوحة والعناصر المسببة لها.
                        الراسب اللون المادة ملاحظات أبيض متبلور أبيض As2O8 طيار (volstile) ، بلورات ثمانية الأوجه. أبيض متبلور أبيض Sb2O8 يتسامى ببطء – يترسب بالقرب من المعدن في هيئة حلقة بيضاء ، أما الزرنيخ فيترسب بعيدا. أصفر باهت أبيض MoO8 بلوريات صغيرة بالقرب من المعدن. يتسامى ببطء وتتحول البلورات إلى اللون الأزرق في اللهب المختزل. أشهب فلزي كرات صغيرة زئبف Hg يسخن المعدن ببطء حتى تنتج أكسدة كاملة.
                        جدول (16): خواص المواد المتسامية المترسبة في الأنبوبة المفتوحة.



                        (5) إختبارات التسخين في الأنبوبة المقفولة Closed tube tests:
                        تستعمل في هذه الإختبارات أنبوبة زجاجية مقفولة من أحد طرفيها ، طولها حوالي 8 سنتيمرات ، وقطرها الداخلي حوالي 3 ملليمترات ، شكل (141) ، صفحة (101) ، والغرض من إستعمال هذه الأنبوبة هو إختبار خواص المواد الناتجة من تسخين المعدن في جو مختزل (بعيدا عن الأكسجين) ، وغالبا ما يحدث أن يتفتت المعدن إلى قطع صغيرة أو أن ينصهر المعدن. ولاجراء هذا الاختبار نضع المعدن المسحوق عند الطرف المقفول للأنبوبة ونسخنه في لهب البنزن. ويبيبن الجدول رقم (17) وصفا مختصرا لبعض الإختبارات داخل الأنبوبة المقفولة.
                        ساخنة باردة المادة ملاحظات سائل شفاف سائل شفاف ماء متعادل أو حامض ضعيف سائل فلزي رمادي زئبف مسحوق المعدن المذاب في حامض ضعيف يغطي لوح نحاسي بالزئبق مادة صلبة بيضاء مادة صلبة بيضاء كلوريد الرصاص ، كلوريد الأنتيمون ، أكسيد الزرنيخوز ، أملاح الأمونيوم سائل أصفر قاتم أو أحمر بلورات صفراء باهتة كبريت يتسامى بسهولة سائل أحمر قاتم مادة صلبة صفراء بإحمرار كبريتيد يتسامى بسهولة مادة صلبة فلزية سوداء لامعة أو مادة متبلورة رصاصية لامعة أو مادة زرنيخ إكسر طرف الأنبوبة المقفل وسخن فتنتشر رائحة الثوم
                        جدول (17): خواص المواد المتسامية المتكونة في الأنبوبة المقفولة


                        6- إختبارات الخرزة Bead tests:
                        تكون أكاسيد كثير من الفلزات مركبات معقدة ذات ألوان مميزة إذا أذيبت عند درجات الحرارة العالية في البوراكس. أم ملح الفوسوفور ، أو كربونات الصوديوم. وتستعمل خرزة فلوريد الصوديوم في الكشف عن اليورانيوم ، ونستعمل في هذا الإختبار سلك بلاتين ملفوف في شكل دائرة صغيرة عند نهايته ، شكل (143). ويجب تحميص الفلزات غير المؤكسدة وكذا مركبات الكبريت ، والزرنيخ ، والأنتيمون ، قبل إجراء إختبارات الخرزة عليها ، وذلك حتى تزال جميع المكونات الطيارة وتتحول المادة المتبقية إلى أكسيد. يسخن طرف سلك البلاتين الملفوف ، ثم يغمص في البوراكس أو ملح الفوسفور أو كربونات الصوديوم حيث تلتصق المادة بالحلقة وتتحول إلى خرزة زجاجية شفافة إذا سخنت في لهب البوري ، وفي حالة ملح الفوسفور يجب التسخين ببطء إذ أن هذه المادة تميل إلى السقوط من لفة السلك نظرا لهروب الماء والأمونيا.
                        فإذا جعلنا الخرزة الساخنة تلمس بعض فتات المعدن المطحون (مؤكسد) ، ثم سخنا الخرزة في اللهب المؤكسد للبوري ، فإن الحرارة المنصهرة سوف تتلون بألوان مميزة تبعا للعنصر الموجود.
                        كما يمكن ملاحظة لون الخرزة في اللهب المختزل ، ويبين جدول (18) ألوان خرزة البوراكس. ويمكن خلع الخرزة من سلك البلاتين بفك لفة السلك. ومن ثم يمكن الإحتفاظ بهذه الخرزة أو إجراء تجارب كيميائية عليها. وإذا أريد الكشف عن النيكل في وجود الكوبالت ، أو أي أكسيد آخرن ، مما يؤدي إلى طمس إختبار خرزة البوراكس ، فإننا نلجأ إلى الطريقة التالية: أذب عددا من خرزات البوراكس في حامض النيتريك ، ثم أضف محلول الأمونيا حتى يصير المحلول قلويا. أضف إلى الراشح بعض سنتيمترات مكعبة من محلول ثاني من ميثيل الجلايوكسيم في الكحول ، يتكون راسب أحمر قرمزي يدل على وجود النيكل وهذا الإختبار حساس جدا.
                        اللهب المؤكسد اللهب المختزل المادة: أكسيد ال... ملاحظات ساخنة باردة ساخنة باردة شفاف شفاف شفاف شفاف سليكون ، ألومنيوم ، زنك أي كمية شفاف شفاف إلى أبيض شفاف شفاف إلى أبيض كالسيوم ، استرونثيوم ، باريوم ، مغنسيوم ، زنك أي كمية أصفر باهت شفاف إلى أبيض أصفر أصفر إلى بني تنجستن كمية متوسطة أصفر إلى بني أصفر أخضر باهت شفاف تقريبا يورانيوم كمية متوسطة إلى كبيرة أصفر إلى بني أخضر مصفر أخضر أخضر كروميوم كمية متوسطة إلى كبيرة أخضر أخضر مزرق شفاف إلى أخضر أخضر مزرق نحاس كمية صغيرة إلى متوسطة أزرق أزرق أزرق أزرق كوبالت كمية صغيرة إلى متوسطة بنفسجي بنفسجي إلى أحمر شفاف شفاف منجنيز كمية صغيرة بنفسجي بني بحمرة رمادي عكر رمادي عكر نيكل كمية صغيرة إلى متوسطة

                        جدول (18): ألوان خرزة البوراكس

                        (7) إختبارات الكشف عن الشق الحامضي:
                        تستخدم الاحماض العادية وبعض المواد الصلبة المساعدة في الكشف عن الشق الحامضي في المعادن: كلوريد ، فلوريد ، كبريتيد (بعضها كربونات ، كبريتات ، فوسفات ، سليكات ، (بعضها) ، جدول (19).
                        الشق الحامضي الإختبارات كلوريد يتفاعل المعدن المخلوط مع ثاني أكسيد المنجنيز مع حامض الكبريتيك المركز ليعطي غاز الكلور. باستعمال خرزة ملح الصوديوم الفوسفوري (الملح الميكروكوزمي) المشبعة بثاني أكسيد النحاس يعطي مسحوق الكلوريد شعلة من الضوء الأزرق السخي حول الخرزة. فلوريد يتفاعل المعدن مع حامض الكبريتيك المركز ليعطي فقاقيع شحمية من حامض الهيدروكلوريك والتي تؤدي إلى ترسيب غشاء أبيض من السليككا على نقطة من الماء تكون موجودة عند طرف الأنبوبة. كبريتيد (بعضها) تتفاعل بعض الكبريتيدات مع حامض الهيدروكلوريك لتعطي غاز كبيرتيد الأيدروجين. يمكن الكشف عن الكبريتيد أيضا بإختبارات الأنبوبة المقفولة (كبريت متسامي ذو لون برتقالي) ، والأنبوبة المفتوحة ، ومكعب الفحم. كربونات يتفاعل المعدن مع حامض الهيدروكلوريك ليعطي غاز ثاني أكسيد الكربون الذي يعكر ماء الجير كبريتات سخن المعدن على مكعب الفحم مع كربونات الصوديوم ومسحوق الفحم ، ثم ضع الراسب على عملة فضية وبلل بالماء. يدل تكون بقعة سوداء على وجود شق الكبريتات (أو الكبريتيد). فوسفات عند تسخين المعدن مع المغنسيوم في الأنبوبة المقفولة ، ثم إضافة الماء يتكون الهيدروجين الفوسفوري. يحقق شق الفوسوفور أيضا بتكوين كتلة زرقاء منصهرة عند تسخين المعدن على مكعب الفحم ثم يبلل بنترات الكوبالت ثم يسخن بشدة. سليكات يتحول المعدن إلى كتلة جيلاتينية بالتفاعل مع حامض الهيدروكلوريك.
                        جدول (19) الكشف عن الشق الحامضي في المعادن.
                        8- إختبارات خاصة:
                        التفرقة بين الكالسيت والأراجونيت: (إختبار ميجن Meigen's test) ، يغلي مسحوق المعدن لمدة تتراوح بين دقيقة وخمس دقائق في محلول نترات الكوبالت ذي تركيز يترواح بين 5 إلى 10% . يلاحظ أن الكالسيت يبقى أبيض اللون ، بينما يتغير لون الأراجونيت ليصبح بنفسجيا نتيجة لتكوين مركب نترات الكوبالت القاعدية. ويكشف عن التغير في اللون بسهولة إذا غسل المسحوق الذي فصل من المحلول بعد عملية الغليان. ولما كانت كل من كربونات الأسترونشيوم ،وكذلك راسب كربونات المغنسيوم القاعدية ، تعطي نفس التفاعل مثل الأرجوانيت ، كما يعطي الدولوميت نفس التفاعل مثل الكالسيت ، فإن الإختبار يستلزم أولا التأكد من أن مثل هذا الإختبار يجرى على أحد شكلي كربونات الكالسيوم – حيث أنه بالإضافة إلى ما سبق ذكره ، فإن هذا الإختبار لا يمكن تطبيقه على المساحيق التي تشمل خليطا من الأراجونيت والكالسيت.
                        التفرقة بين الكالسيت والدولوميت: (أ) إختبار ليمبرج Lemberg's test ، يغلى مسحوق المعدن لمدة تتراوح بين 15-20 دقيقة في محلول كلوريد الألومنيوم وخلاصة صبغة الهيماتوكسيلون (يحضر المحلول بأن يغلى لمدة عشرين دقيقة – محلول مكون من ستين جرام من الماء مع مخلوط أربعة جرامات من كلوريد الألومنيوم ، وستة جرامات من خلاصة صبغة الهيماتوكسيلون (صبغة لوج وود) مع استمرار التقليب وإضافة ماء بدلا مما يفقد بالتبخير). يصبغ الكالسيت في هذا الإختابار ويصبح لونه أحمر وريدا ، بينما لا يتغير لون الدولوميت. يعطي الأرجوانيت نفس التفاعل مثل الكالسيت.
                        (ب) إختبار ماهلر Mahelr's test : يستخدم في هذه الحالة محلول مخفف من نترات النحاس . يعطي مسحوق الكالسيت فورانا شديدا إذا غلي لبضع دقائق في هذا المحلول ، ويعقب هذا الفوران تلون حبيبات الكالسيت بلون أخضر ، أما الدولوميت فلا يحدث له أي تغيير في هذا الإختبار.
                        إختبار الكاسيتريت: لما كانت معادن الكاسيتريت تتراوح في لونها بين ظلال مختلفةمن الأصفر والبني والأسود فإن ظهور إختلاف في مظهرها يمكن إستخدامه لتحقيق هذه المعادن والكشف عنها. ويتم ذلك بأن نضع بضع كسرات من الكاسيتريت في أنبوب إختبار فوق حبيبات من فلز الزنك ، ثم نضيف إلى المخلوط حامض الهيدروكلوريك ، وفي هذه الحالة سوف يختزل الأيدروجين المتولد حديثا أكسيد القصدير SnO2 ، وبعد بضع دقايق يصبح الكاسيتريت مغطى بغشاوة رقيقة من فلز القصدير ذي البريق الفلزي واللون الأشهب.
                        9- ملخص الكشف عن الفلزات في المعادن: (تبعا للترتيب الأبجدي للفلزات).
                        ألومنيوم (AL) : يعطي مسحوق المعدن المبلل بنترات الكوبالت عند تسخينه بشدة على مكعب الفحم راسبا أزرق غير منصهر.
                        أنتيمون (Sb): يعطي مسحوق المعدن المحمص (المؤكسد) على مكعب الفحم قشورا بيضاء قريبة من المسحوق المحمص. يعطي في الأنبوبة المفتوحة مادة بيضاء متسامية بالقرب من العينة. يعطي في الأنبوبة المقفولة مادة متسامية بنية اللون مشوبة بالإحمرار ، سوداء اللون عندما تكون ساخنة.
                        باريوم (Ba): يعطي إختبار اللهب لونا أخضر تفاحيا مصفرا.
                        بوتاسيوم (K): يعطي إختبار اللهب لونا بنفسجيا ، عندما يبصر إليه من خلال مرشح زجاجي أزرق اللون.
                        تنجستن (W): تتلون خرزة الملح الفوسفوري (الميكروكوزمي) بلون أخضر مشوبا بالزرقة في اللهب المختزل.
                        تيتانيوم (Ti): تتلون خرزة الملح الفوسفوري (الميكروكوزمي) بلون أصفر وهي ساخنة ، وبلون بنفسجي وهي باردة ، وذلك في اللهب المختزل.
                        حديد (Fe): تتلون خرزة البوراكس بلون أصفر وهي ساخنة ، وتكون عديمة اللون وهي باردة ، وذلك في اللهب المؤكسد. ولكن في اللهب المختزل تتلون الخرزة بلون أخضر زجاجي.
                        ذهب (Au): يؤدي الإختزال على مكعب الفحم إلى تكوين خرزة من الذهب طرية قابلة للطرق.
                        رصاص (Pb): يؤدي الإختزال على مكعب الفحم إلى تكوين خرزة من الرصاص ذي البريق القلوي والقابلة للطرق وإذا حكت في ورقة تركت أثرا أسودا.
                        زرنيخ (As): تؤدي الأكسدة على مكعب الفحم إلى تكوين قشرة صفراء اللون وهي ساخنة ، بيضاء اللون وهي باردة ، أما إذا سخن المعدن على مكعب الفحم مع نترات الكوبالت ثم أعيد تسخينه بشدة فإنه تتكون قشرة خضراء زرعية اللون.
                        زئبف (Hg): يؤدي تسخين مخلوط المعدن مع يوديد البوتاسيوم والكبريت على مكعب الفحم إلى تكوين قشرة صفراء اللون مشوبة بالإخضرار مع تصاعد أبخرة صفراء اللون مخضرة. أما إذا سخن مخلوط المعدن مع مسحوق كربونات الصوديوم ومسحوق الفحم في الأنبوبة المقفولة فإنه تتكون كريات متسامية من الزئبق.
                        سترونشيوم (Sr): يعطي إختبار اللهب لونا أحمر قرمزيا.
                        صوديوم (Na): يعطي إختبار اللهب لونا أصفر.
                        فضة (Ag): يعطي الإختزال على مكعب الفحم خرزة من الفضة.
                        قصدير (Sn): يعطي الإختزال على مكعب الفحم خرزة من القصدير.
                        كالسيوم (Ca): يعطي إختبار اللهب لونا أحمر طوبيا.
                        كروميوم (Cr): تتلون خرزة البوراكس بلون أخضر ، وكذلك تتلون خرزة الملح الفوسفوري بلون أخضر ، أما خرزة كربونات الصوديوم فتتلون بلون أصفر مشوبا بالإخضرار وتكون معتمة.
                        مغنسيوم (Mg): عندما يسخن مسحوق المعدن المبلل بنترات الكوبالت على مكعب الفحم ، ثم يتابع التسخين بشدة مرة أخرى فإنه يتكون راسب وردي اللون.
                        مولبدنوم (Mo): تعطي خرزة الملح الفوسفوري لونا أخضر ناصعا في اللهب المؤكسد ، بينما تعطي الخرزة في اللهب المختزل لونا أخضر مشوبا بالمواد وهي ساخنة ، ولونا أخضر سخيا ونقيا وهي باردة.
                        نيكل (Ni): تعطي خرزة البوراكس لونا بنيا مشوبا بالإحمرار في اللهب المؤكسد ، بينما تعطي الخرزة في اللهب المختزل لونا رماديا معتما.
                        يورانيوم (U): تعطي خرزة الملح الفوسفوري لونا أصفر وهي ساخنة ولونا أحضر مشوبا بالإصفرار وهي باردة ، وذلك في اللهب المؤكسد. بينما تتلون الخرزة في اللهب المختزل بلون أخضر مشوبا بالإصفرار وهي ساخنة وتصبح خضراء ناصعة وهي باردة.

                        تعليق


                        • #42
                          التحليل الكيميائي الكمي للمعادن

                          يتطلب الأمر في التحليل الكيميائي الكمي للمعادن تعيين كمية العناصر الداخلة في تركيب المعدن ، سواء أكانت كميات غالبة ، أم كميات قليلة ، أم شحيحة. ويتم ذلك باستعمال طرق كيميائية وفيزيائية معقدة ودقيقة ، وتحتاتج في بعض الأحيان إلى بعض الوقت والجهد كما في طرق التحليل الكيميائي الكمية التقليدية ، الحجمية منها ، والوزنية ، التي تستخدم طرق المعايرة والترسيب المعروفة لدى الكيميائي والموجود تفاصيلها في مراجع علم الكيمياء التحليلية.
                          ويمكن القيام بالتحاليل الكيميائية باستخدام الطرق الفيزيائية مثل التحليل الطيفي ، والتي تتم عن طريق تبخير (أو حرق) كمية بسيطة من مسحوق المعدن توضع في حفرة صغيرة في أحد قطبي الجرافيب في القوس الكهربائي للجهاز. ويتم تحيل طيف العناصر الموجودة في المعدن عن طريق منشور الكوارتز أو شبكية دقيقة . وبقياس كثافة وطول الموجات المميزة لكل عنصر يتم حساب كمية العناصر الداخلة في تركيب المعدن. وفي هذا الجهاز يمكن تعيين كمية العناصر الشحيحة التي تصل قيمتها إلى أجزاء قليلة من ملوين جزء. وهناك جهاز آخر لا يحتاج إلى سحق المعدن إو حرقه ، إنما تعريض سطح مكصقول من المعدن للأشعة السينية التي تحدث عملية تفلر أو إنطلاق أشعة أخرى ثانوية من العناصر المكونة للمعدن تتناسب شدتها وكثافتها وطول موجتها مع كمية كل عنصر ونوعه. وتعرف هذه الطريقة باسم طريقة التحليل التفلري بالأشعة لاسينية. وتستخدم المعامل الحديثة للتحاليل الكيميائية للمعادن أجهزة إلكترونية دقيقة يتم فيها تحليل المعدن وحساب كمية العناصر المكونة له حسابا كميا بطريقة آلية (الجهاز متصل بحاسب إلكتروني) في دقائق معدودات. ومن أمثلة هذه الأجهزة جهاز Electron microprobe. وهذه الأجهزة دقيقة جدا وتحتاج إلى خبرة في تشغيلها وصيانتها بالإضافة إلى ثمنها الغالي. ولكن ما تقوم به من أضعاف مضاعفة من التحاليل في وقت قصير جدا – إذا قورنت بطرق التحليل التقليدية – وبجهد بشري بسيط ، يبرر تجهيز معامل البحوث ودراسات المعادن بمثل هذه الأجهزة.
                          ويقدم التحليل الكيميائي الكمي نتائج التحليل في صورة نسبة مئوية بالوزن لكميات العناصر الداخلة في تركيب المعدن. ويمكن التعبير عن التركيب الكيميائي "المميز" للمعدن في صورة قانون يبين أسماء العناصر الداخلة في تركيب المعدن ونسب إتحادها. فمثلا نعبر عن التركيب الكيميائي الذي يميز معدن هاليت بالقانون NaCl ، والذي يدل على أنه يوجد في معدن هاليت عدد متساو من أيونات الصوديوم والكلورين متحدة مع بعضها (النسبة 1:1).
                          القوانين الكيميائية للمعادن Chemical Formulae of Minerals
                          تتكون بعض المعادن من مركبات كيميائية بسيطة ، ولكن غالبية المعادن تتكون من مركبات معقدة. ويحسب قانون المركبات المعدنية البسيطة من نتيجة التحليل الكيميائي بنفس الطريقة التي يحسب بها قانون المواد الكيميائية الأخرى.
                          ويعطي التحليل الكيميائي النسبة المئوية بالوزن لتركيب المعادن ، أو بعبارة أخرى يعطي عدد الأجزاء من العناصر المختلفة (أو أكاسيدها) الموجودة ي 100 جزء من المعدن. ولحساب قانون المعدن يجب تحويل هذه النسب المئوية بالوزن الذري لذلك العنصر. فمثلا أعطي التحليل الكيميائي لمعدن كالكوباريت Chalcopyrite النتيجة الآتية: (يلاحظ في هذا التحليل الكيميائي وفي كل التحاليل الكيميائية للمعادن وغيرها أن حاصل جمع النسب المئوية بالوزن لا يكون 100 تماما. ولكنه في أحسن الظروف يتراوح بين 99.5 ، 100.5 وذلك لأسباب تتعلق بطرق التحليل ، وليس نتيجة للمعدن نفسه. وفي الحسابات الدقيقة يتم تحويل النسبة المئوية للتحليل بالوزن من المجموع المختلفة عن 100 إلى 100 بالضبط).
                          (1) (2) (3) (4) (5) العنصر النسبة المئوية للتحليل الأوزان الذرية نسبة الإتحاد نسب الذرات Cu 34.89 ÷ 63.54 = 0.549 1.021 1 Fe 30.04 ÷ 55.85 = 0.538 1.000 1 S 34.51/99.44 ÷ 33.07 = 1.077 2.002 2
                          ونجد تحت العامودين 4 ، 5 ، نسب إتحاد الذرات في المعادن في هيئة أعداد صحيحة (نسب الذرات( ، وقد حصلنا عليها بقسمة القيم الموجودة تحت (3) بأصغر قيمة (أي قسمنا على 0.538) ، وفي المثال السابق لمعدن الكالكوباريت نجد أن هذه النسب تصبح Cu:Fe:S = 2:1:1 ، أي أن قانون الكالكوباريت هو Cu Fe S2 . هذا القنون هو القانون الأولي لأنه يدلنا على نوع وعدد الذرات الموجودة في المعدن بدون أي بيان للطريقة التي تتحد بها هذه الذرات.
                          وفي حالة المعادن التي تحتوي على أكسيج فإن نتيجة التحليل الكيميائي الكمي تعطي في هيئة نسبة مئوية لأكاسيد العناصر الموجودة في المعدن ، وليس في صورة عنصار . ويرجع السبب في ذلك إلى أنه لا توجد طريقة تحليل كيميائية لتعيين الكمية الكلية للأكسجين في المركب. ونتبع نفس الطريقة السابقة للحصول على القنون الكيميائي للمعادن ، إلا أنه بدلا من قسمة نسبة التحليل الكيميائية المئوية بالأوزان الذرية فإننا في هذه الحالة نقسمها بالأوزان الجزيئية للأكاسيد المختلفة ، ولنأخذ مثلا لذلك معدن الجبس.
                          (1) (2) (3) (4) (5) الأكسيد الوزن الجزيئي النسبة الجزيئية Cu 32.44 ÷ 56.1 = 0.578 1 1 Fe 46.61 ÷ 80.06 = 0.582 1.006 1 S 20.74 ÷ 18.0= 1.152 1.979 2
                          وفي هذا المثال نجد أن النسبة بين الأكاسيد Cao:So8:H2O تساوي النسبة 2:1:1 في معدن الجبس. أي أ،ه يمكننا أن نمثل التركيب الكيميائية لمعدن الجبس بواسطة القانون: Cao SO8 2H2O أو CaSO4 2H2O. أما قوانين المعادن ذات التركيب الأكثر تعقيدا فتحسب قوانينها الكيميائية بطريقة مماثلة ، وبشرط أن ندخل في حسابنا أن هناك بعض العناصر تحل محل عناصر أخرى في البناء الذري للمعدن (عناصر التشابه الشكلي). مثل هذه العناصر المتشابهة يجب معاملتها كمجموعة ، وليس كل على إنفراد ، (أنظر خاصية التشابه الشكلي في موضوع الخواص الكيميائية البلورية للمعادن ، الباب الخامس) ، والمثال التالي يبين لنا هذه الحالة بشئ من الإيضاح.
                          معدن الجارنت Garnet:
                          (1) (2) (3) (4) (5) الأكسيد النسبة المئوية للتحليل الأوزان الجزيئية نسبة الإتحاد النسب الجزيئية SiO2 36.66 ÷ 60.1 = 0.61 0.096 3 Al2O3 4.18 ÷ 102.0 = 0.041 0.197 1.000 1 Fe2O3 24.86 ÷ 159.6 = 0.156 MgO 0.25 ÷ 40.3 = 0.006 CaO 33.89 ÷ 56.1 = 0.604 0.613 3.112 3 MnO 0.20 ÷ 70.9 = 0.003 TiO2 0.10 ÷ 79.9 = 0.000 100.14
                          ويلاحظ في هذا المثال أننا جمعنا نسب الإتحاد لأكسيد الألومنيوم وأكسيد الحديديك إلى بعضهما البعض ، وذلك لأن عنصري الألومنيوم والحديد (ثلاثي التكافؤ) يحلان محل بعضهما البعض ، وكذلك تحل عناصر المغنسيوم والكالسيوم والمنجنيز على بعضها البعض ، ونتيجة لذلك فقد أضفنا نسبة إتحادها بعضها إلى بعض والنتيجة النهائية هي أن نكتب القانون الكيميائية لمعدن الجارنت كالآتي. 3 (Ca, Mg, Mn) O. (Fe2Al)2 O3. 2 SiO2 (Ca, Mg, Mn)8 (Fe, Al)2 Si3 O12
                          والعناصر المحصورة بين الأقواس يمكنها أن تحل بعضها محل بعض. وهناك معادن أكثر تعقيدا من هذه الصورة ، ولا يمكن الحصول على قانونها الكيميائي بهذه الطريقة وما ذلك إلا بسبب التبلور التداخلي بين مكونتين طرفيتين (مركبان نقيان يذوبان في بعضهما البعض بأي نسبة ليكونا مادة متجانسة تركيبها الكيميائي يتدرج بين الطرفين). مثال ذلك معدن البلاجيوكليز الذي يحتوي على كل من الصوديوم والكالسيوم بجانب عناصر الألومنيوم والسليكون والأكسجين ، ونكتب قانون الكيميائي بالنسبة غلى مكونتيه الطرفيتين "المركبان النقيا" ، وهما NaAlSi3O8 "ألبيت Albite" و CaAL2ASi2O8 "أنورثايت Anorthite" ، وذلك لأن معدن البلاجيوكليز ينتج عن التبلور الداخلي للألبيت والأنورثيت. ومن أمثلة لابلاجيوكليز الناتج نوع ، غسمه أوليجيوكليز ، يكتب قانون الكيميائية هكذا أب 8 أ ن 20 ، ونعني بذلك أن الأوليجوكليز يتكون من 80 جزءا ألبيت (يرمز له أ ب Ab) ، 20 جزءا أنورثيت (يرمز له بالرمز أن An).
                          يوضح الأوليفين مثالا آخر لهذه الحالة ، فالأوليفين (Mg2Fe)2 SiO3 ، يتكون أساسا من التيلور التداخلي للمكونتين الطرفيتين فورستريت Forstrite Mf2SiO4 [Fo] ، فياليت Faylite Fe2SiO4 [Fa] . وعلى ذلك فهناك أوليفين قانونه Fo80Fa70 ، وآخر Fo82Fa23 ..

                          تعليق


                          • #43
                            الباب الرابع: الخواص الفيزيائية للمعادن Physical Prosperities of Minerals

                            سبق أن عرفنا المعدن بأنه كل مادة صلبة متجانسة غير عضوية تكونت بفعل عوامل طبيعية ، ويتميز بأن له بناء ذريا منظما وتركيبا كيميائيا مميزا. وقد رأينا في الباب الثاني كيف يظهر البناء الذري المنظم في هيئة بلورة تحدها أوجه بلورية مرتبة حسب عناصر تماثلية مميزة ، وتميل على بعضها البعض بزوايا ثابتة. وأن كل معدن يمكن التعرف عليه وتمييزه عن معدن آخر إذا وجد في هيئة بلورة كاملة الأوجه ، أو حتى في وجود بعض الاوجه. ولكن نظرا لأن المعادن توجد في الطبيعة – في معظم الحالات – في هيئة مجموعات بلورية متجانسة أو غير متجانسة ، وكذلك في هيئة مجموعات معدنية متبلورة ، مثل التوائم ، والبلورات النطاقية ، والمجموعات غير المنتظمة والمجموعات الحبيبية والشجرية والعنقودية .. الخ ، وفي هذه الأخيرة لا توجد أوجه بلورية على مادة المعدن مما يجعل التعرف على المعدن – إعتمادا على خواص أوجهه البلورية وتوزيعها – مستحيلا ، لذلك فإننا نلجأ إلى طريقة أخرى للتعرف على المعدن وتمييزع عن غيره. هذه الطريقة هي الإستعانة بخواص المعدن الفيزيائية وهي خوصا سهلة التعيين. ولما كانت هذه الخواص تتوقف على كل من البناء الذري التركيب الكيميائية فإنها في مجموعها مميزة لكل معدن. والخوصا الفيزيائية التالية لا يمكن حصرها في ستة أقسام يمكن تعيينها في العينات اليديوية دون الحاجة إلى الإستعانة بأجهزة خاصة معقدة غالية الثمن.
                            أما إذا كانت عينة العدن صغيرة لدرجة لا تسمح بتعيين هذه الخواص الفيزيائية ، أو أن تعيين هذه الخواص الفيزيائية لم يؤد إلى تحقيق المعدن تحقيقا مؤكدا والتعرف على إسمه ، أو أريد الحصول على معلومات تفصيلية مرتبطة بالبناء الذري والوحدة البنائية ، وأبعادها وخواصها التماثلية ، والخواص الفيزيائية التفصيلية للمعدن ، فإننا نلجأ إلى إستخدام أجهزة متخصصة للحصول على هذه المعلومات وتحقيق العدن ، مثل الميكروسكوب المستقطب (بنوعية للمعادن الشفافة والمعادن المعتمة) ، وحيود الأشعة السينية ، والتحليل الحراري التفاضلي ، والتحليل الطيفي الإمتصاصي بالأشعة دون الحمراء ، كما سيلي الإشارة إليه بإيجاز في ختام هذا الباب.د
                            1- خواص بصرية Optical properties: وهذه خواص تعتمد على الضوء ، ومن أمثلتها البريق ، واللون ، وعرض الألوان ، والتضوء ، والشفافية ، والمخدش.
                            2- خواص تماسكية Cohesive properties: وهذه خواص تعتمد على تماسك مادة المعدن ومدة مرونتها ، ومن أمثلتها الصلادة ، والإنفصام ، والإنفصال ، والمكسر ، والقابلية للطرق والسحب.
                            3- خواص كهرومغناطيسية Electrical and Magnetic properties: وهذه خواص تتوقف على الكهربائية والمغناطيسية ، ومن أمثلتها الكهرباء الحرارية ، والكهرباء الضغطية والمغناطيسية.
                            4- الوزن النوعي Specific gravity: أو بمعنى آخر كثافة المعدن بالنسبة لكثافة الماء. 5- خواص حرارية Thermal properties: تضم هذه الخواص أنواع عدة مثل حرارة التكوين ، وحرارة التبلور ، والتوصيل الحراري ،والتمدد الحراري ، وحرارة الذوبان ، والقابلية للإنصهار . ولكن أهم هذه الخواص بالنسبة للتعرف على المعدن هي خاصية القابلية للإنصهار.
                            6- خواص أخرى ، (غير سالفة الذكر): مثل المذاق ، الملمس ، والرائحة ، والنشاط الإشعاعي.
                            1- الخواص البصرية Optical properties

                            تعليق


                            • #44
                              البريق Luster

                              وهو عبارة عن المظهر الذي يبديه سطح المعدن في الضوء المنعكس. أو بعبارة أخرى هو مقدار ونوع الضوء المنعكس من سطح المعدن . والبريق من الخواص الهامة في التعرف على المعدن.ويمكن تقسيم بريق المعادن إلى نوعين: فلزي ولا فلزي. وعناك معادن لها بريق وسط بين الإثنين.
                              البريق الفلزي: هو ذلك البريق الذي تعطيه الفلزات. ومن أمثله المعادن التي لها بريق فلزي بيريت Pyrite (FeSz) ، وجالينا Galena (PbS) ، ومثل هذه المعادن تكون معتمة وثقيلة الوزن.
                              أما أنواع البريق الأخرى فتوصف بأنها لا فلزية. ونلاحظ أن المعادن ذات البريق اللافلزي - بصفة عامة – تكون فاتحة اللون ، وتسمح بمرور الضوء خلالها وخصوصا في الأحرف الرفيعة. ويشمل البريق اللافلزي الأنواع الآتية:
                              بريق زجاجي Vitreous of Glassy: مثل بريق الزجاج ومن أمثلته بريق الكوارتز.
                              بريق ماسي Adamantino: مثل بريق الألماس الساطح. ويعطي هذا البريق بواسطة المعادن ذات معاملات الإنكسار العالية.
                              بريق راتنجي Resinous: مثل سطح ومظهر الراتنج أو الكهرمان ، ومن أمثلته بريق الكبريت ، وسفاليريت (ZnS) Sphalerite. بريق لؤلؤي Pearly: ويشبه هذا البريق بريق اللؤلؤ ، ومن أمثلته بريق التلك (الطلق) Mg (OH) Silicate.
                              بريق حريري Silky: مثل الحرير ، وينتج عن المعادن التي في هيئة ألياف ، ومن أمثلته بريق أحد أنواع الجبس المعروف بإسم ساتنسبار Satinspar.
                              بريق أري أو مطفي Earth of dull: عندما يكون السطح غير براق أي مطفي ،ومن أمثلته بريق معدن الكاولين [Al (OH) Silicate].
                              وتبعا لمقدار الضوء المنعكس من سطح المعدن (أي كثافته) يقال للبريق ساطح أو لامع أو براق أو مطفي.
                              اللون Color

                              ينتج لون المعدن عن طول الموجة أو الموجات الضوئية التي تنعكس من المعدن وتؤثر في شبكية العين لتعطي الإحساس باللون. ويعتبر لون المعدن من أول الخواص الفيزيائية التي تشاهد ، ووسيلة هامة جدا تساعد على التعرف على المعدن بالرغم مما هو معروف من أن اللون لا يمثل صفة أساسية في المعدن ، إذ كثيرا ما يكون اللون نتيجة لشوائب غريبة تصادف وجودها في كيان المعدن. وهناك معادن لها لون ثابت يساعد في التعرف عليها مثل الكبريت (أصفر) والملاكيت Malachite [Cu (OH) Carbonise] ، الماجنتيت Magentite (Fe2O4) (أسود) ، السنبار Cinnabar (HgS) ، (أحمر).
                              ويجب ملاحظة لون المعدن على سطح حديث خال من التغيرات التي تطرأ على سطح المعدن المكشوف للعوامل الخارجية ، مثل الصدأ والتحلل (الأكسدة والكربنة والتموه) ، التي تسبب تغير اللون الأصلي.
                              أما المعادن التي ليس لها لون ثابت ، أي التي تظهر ألوانا مختلفة في العينات المختلفة ، فيعزى إختلاف اللون فيها إلى أسباب عدة. فقد يكون السبب كيميائيا أي نتيجة لإختلاف التركيب الكيميائي من عينة إلى أخرى ، مثل معدن سافليريت Sphalerite ، الذي يختلف لونه من البني الأصفر إلى الأسود ، وذلك بسبب كثرة الحديد في هذه الحالة. وقد يكون السبب في تغير اللون وجود شوائب تعمل عمل الأصباخ فتصبغ المعدن بلون مخالف للونه إذا كان نقيا ، ومن الأمثلة المعروفة أنواع الكوارتز الوردي Rose quartz ، والكوارتز البنفسجي Amethyat ، والكوارتز الأحمر خفي التبلور crysptocrystalline ، المعروف باسم جاسبر jasper ، إذ تنتج هذه الألوان عن وجود شوائب مثل أكسيد الحديديك (اللون الأحمر) أو أكاسيد المنجنيز (اللون البنفسجي) ، والمعروف أن الكوراتز النقي شفاف اللون. وقد يعزى التغير في اللون إلى البناء الذري للمعدن حيث توجد بعض الروابط بين الذرات "مكسرة" ، كما هو الحال في معدن الكوارتز المدخن smoky quartz (له لون الدخان).
                              وقد يكون اللون موزعا في المعدن الواحد في هيئة حلقات أو نطاقات منتظمة حول بعضها البعض مثل معدن أجيت Agate (كوارتز خفي التبلور) ، وتورمالين Tourmaline ، (سليكات الألومنيوم والبورون والمغنسويم والحديد).
                              عرض الألوان Play of colors

                              يقال للمعدن إنه يظهر عرضا للألوان عندما يعطي ألوانا مختلفة في تتباع عندما يدار المعدن ببطء أو عندما تحرك العين بالنسبة إلى المعدت ذات اليمين أو ذات اليسار. ومن أمثلة المعادن التي تعطي عرضا للألوان الألماس (نتيجة لقوة التفرق الضوئي dispersion) ، لابرادوريت Labradorite (سليكات الألومنيوم والكالسيوم والصوديوم (نتيجة لإنعكاس الضوء من أسطح مكتنفات صفائحية داخل المعدن. وخاصية الأوبال أو اللألأة هي إحدى أنواع عر ض الألوان ، ويظهرها معدن الأوبال Opal (SiO2. nH2O) في النوع الذي يستعمل في الأحجار الكريمة ، حيث تنتج الألوان المتلالئة من الإنعكاس الداخلي في المعدن.
                              أما التصدؤ ، فهو تغير في الألوان على السطح نتيجة لتحلل المعدن الأصلي وتكون طبقة سطحية من نواتج التحلل ، أي أن لون السطح يختلف عن لون سطح مكسور حديثا . ومن أمثلة المعادن التي تهظر علهيا التصدؤ النحاس والبورنيت Bornite (Cu5FeS4).
                              وخاصية عين الهر ، هي عبارة عن البريق الحريري المتموج الذي يتغير بإختلاف إتجاه البصر. يظهر مثل هذا البريق المتموج على سطح المعادن ذات النسيج الأليافي (أي وحداتها توجد في هيئة ألياف) مثل معدن ساتنسبار Satinspar (الجبس الأليافي).
                              التضوء Luminescence

                              يوصف المعدن بأنه متضوء (أي يعطي ضوءا) ، إذا حول الأشكال الأخرى من الطاقة إلى ضوء. وينتج التضوء عن التعرض للحرارة أو الأشعة فوق البنفسجية أو الأشعة السينية .. الخ. ويختلف لون التضوء عن اللون الأصلي للمعدن ، وألوان التضوء دائما ألوان باهرة ساطعة. مثلا ، تعطي بعض أنواع معدن الكالسيت Calcite عند تعرضها للأشعة فوق البنفسجية ألوانا حمراء باهرة ، أما معدن ويلييميت Willemite فإنه يعطي لونا أخضر ساطعا. وعندما تنتج ألوان التضوء أثناء التعرض للمؤثر فقط فإنها تعرف باسم التفلر Florescence وقد اشتق اسم هذه الخاصية من معدن فلوريت Fluorite [CaF2] الذي تبدي بعض أنواعه هذه الخاصية. أما إذا استمرت ألوان التضوء عقب زوال المؤثر فإنها تعرف باسم التفسفر Phosphorescence. وقد لوحظت خاصية التفسفر منذ حين عندما كانت تظهر بعض المعادن – التي كانت معرضة لضوء الشمس – ساطحة بألوان جذابة ، بعد نقلها إلى حجرة مظلمة.
                              وخاصية التفلر أكثر إنتشارا بين المعادن عن غيرها من أنواع التضوء الأخرى. ومن أمثلة المعادن التي تبدي في معظم الأحيان خاصية التفلز نذكر – بالإضافة إلى الكالسيت والفلوريت والويللميت - شيليت Scheelite (CaWO4) ، سكابوليت Scapolite (Na Ca AL Silicate) ، الألماس ، الأوتونيت Autunite (Hydrate Ca U Phosphate) . ولا يمكن التنبؤ بخاصية التفلر إذ نلاحظ أن بعض عينات المعدن الواحد تتفلر ، بينما عينات أخرى لنفس المعدن لا تتفلر.
                              وتستعمل الأشعة فوق البنفسجية عادة في الكشف عن خاصية التفلر ، ويجرى الإختبار في مكان مظلم. والأجهزة المستخدمة تستعمل عادة مصابيخ بخار الزئبق أو أنابيب الأرجون أو غيرها من مصادر إنتاج الأشعة فوق البنفسجية ، وقد تكون هذه الأجهزة من النوع الثابت الذي يستخدم التيار الكهربائي ، أو من النوع المتنقل الذي يستخدم بطاريات ، حيث يسهل حمل الجهاز والتنقل به ، مما يساعد على إستكشاف المعادن المتفلرة داخل الكهوف والمناجم.
                              الشفافية Transparency

                              تعبر هذه الخاصية عن قدرة المعدن على إنفاذ الضوء . وتعرف المعادن التي تسمح برؤية الأجسام من خلالها بوضوح وسهولة باسم معادن شفافة . فإذا بدت الأجسام غير واضحة فإن المعدن يعتبر في هذه الحالة نصف شفاف . أما المعدن المعتم فهو الذي لا يسمح بنفاذ الضوء حتى خلال أحرفه الرفيعة. ومن أمثلة المعادن المعتمة البيريت ، الجالينا ، الجرافيت ، الكالكوبيريت.
                              المخدش Streak

                              يقصد بمخدش المعدن لون مسحوقه الناعم.ويمكن معرفة لون المسحوق (المخدش) بسهولة بواسطة حك المعدن على سطح لوح من الخزف الأبيض المطفي بعرف بإسم لوح المخدش ، وملاحظة لون المسحوق الناتج ، وليس من الضروري أن يكون لون المعدن مثل مخدشه ، فمثلا معدن بيريت لونه كالنحاس الأصفر ولكن مخدشه أسود ، والكروميت Chromite (FeCr2O4) ، لونه أسود ومخدشه بني. ولما كان المخدش خاصية ثابتة بالنسبة للمعدن الواحد لذلك فإن تعيينه بالنسبة للمعادن ذات الألوان المتغيرة يعتبر ذا أهمية كبرى ، إذ يساعد كثيرا على التعرف على المعدن. كذلك نلاحظ أن كثيرا من المعادن التي تشترك في لون واحد تختلف في مخدشها. فمثلا بعض عينات الماجنتيت (Fe3O4) والهيماتيت (Fe2O3) ، والجوتيت HFeO2)) ، تكون سوداء اللون ، ولكن إذا حققنا مخدشها وجدنا للمجانتيت مخدشا أسود ، في حين يكون للهيماتيت مخدشا أحمر ، أما لجوتيت فنجد أن مخدشه أصفر بني.
                              عندما يكون المعدن صلدا جدا فإنه لا ينخدش على لوح المخدش ليترك أي مسحوق يمكن تمييز لونه ، بل على العكس ربما يخدش اللوح نفسه. وفي مثل هذه لاحالة تكسر قطعة صغيرة من هذا المعدن الصلد ونطحنها طحنا كاملا ونشاهد لون المسحوق الناتج.
                              في أحوال خاصة نستعمل لوحا خزفيا لامعا ونشاهد لون الأثر الذي يتركه المعدن عليه ، فقد وجد أن هذا الأثر على اللوح اللامع يساعد في التفرقة بين معدن الجرافيت ذي المخدش الأسود اللامع وبين الموليدينيت Milybdenite (MoS2) ، ذي المخدش المائل للخضرة (كلا المعدنين يشبهان بعضهما البعض في كثير من الخواس الفيزيائية).
                              2- الخواص التماسكية Cohesive properties
                              الصلادة Hardness:

                              الصلادة لفظ يعبر عن مقدار المقاومة التي يبديها المعدن تجاه الخدش والتآكل. ويمكن تعيين درجة الصلادة بملاحظة السهولة أو الصعوبة التي ينخدش بها المعدن بواسطة دبوس أو نصل سكن حاد. وتتراوح درجة الصلادة في المعادن بين تلك الدرجة المنخفضة في معدت التلك Tale الذي يمكن خدشه بواسطة الظفر وتلك الدرجة العلاية في معدن الألماس Diamond الذي يعتبر أصلد مادة معروفة سواء أكانت طبيعية أم صناعية. وتعتبر الصلادة من الخواص الفيزيائية الهامة للمعدن ، لأنه يمكن تعيينها بسرعة وبذلك تساعد في التعرف على المعدن. ويمكن تعيين صلادة المعدن تعيينا نسبيا ، وذلك بمقارنتها بصلادة المعادن المرتبة تبعا لزيادة درجة صلادتها في مقياس الصلادة المعروف باسم مثياس موهس للصلادة ، الذي يحتوي على عشرة معادن تبتدئ بأقل المعادن صلادة وهو التلك وتنتهي بأكثر المعادن صلادة وهو الألماس ، وبين الإثنين يوجد ثمانية معادن لها أرقام تمثل درجة الصلادة النسبية من 2 إلى 9. وفيما يلي مقياس موهس للصلادة: 1- التلك Tale 2- الجبس Gypsum 3- الكالسيت Calcite 4- الفلوريت Fluorite 5- الأباتيت Apatite 6- الأرثوكليز Orthoclase 7- الكوارتز Quartz 8- التوباز Topaz 9- الكوارندوم Corundum 10- الألماس Diamond
                              فإذا أردنا معرفة صلادة أي معدن اختبرناه بالظفر أو بنصل المبراة لمعرفة موضعه بين المعادن الأخرى ، ثم نجرب على سطحه المعادن المقاربة له ، حتى نحدد موضعه بين المعدن الذي يخدشه والمعدن الذي ينخدش به. مثلا نجد أن معدن البيريت يخدش معدن الأرثوكليز (6) ، ولكنه لا يخدش المعدن الذي يلي الأرثوكليز _ينخدش نفسه بذلك المعدن – الكوارتز). أي أن صلادة ابيريت وسط بين صلادة الأرثوكليز (6) وصلادة الكوارتز (7) أي 6.5. فإذا أوجد معدنان لهما نفس الدرجة من الصلادة فإنهما يخدشان بعضهما بالتساوي.وعند تجربة قياس درجة الصلادة يجب التحييز بين الإنخداش الحقيقي وبين المخدش أي لون المسحوق الناتج من الإحتكاك ، مثل علامة الطباشير مثلا على لاسبورة (فلا نقول أن الطباشير أصلد من السبورة) ، فالإنخداش صفة ثابتة لا يمكن مسحها من على سطح المعدن ، ولكن المخدش يمكن مسحه بسهولة . كذلك يجب أن يكون طول الخدش أقصر ما يمكن ، بحيث لا يزيد عن ربع السنتيمتر حتى لا يشوه عينة المعدن.
                              ويجب ملاحظة أن الأرقام المعطاة للمعادن في مقياس موهس للصلادة تمثل الصلادة النسبية ، إذ ليس حقيقيا أن صلادة الألماس عشرة أمثال صلادة التلك فإنها أكثر من ذلك بكثير ، كذلك ليس حقيقا أن الفرق بين صلادة معدن والذي يليه في مقياس الصلادة المذكور متساو ومنتظم في كل المقياس ، إذ أن من المعروف أن الفرق بين 9 (الكوراندوم) و 10 (الألماس) في مقياس الصلادة يفوق بكثير الفرق بين 1 (التلك) و 9 (الكوراندوم.
                              ويسهل تعيين الصلادة على وجه التقريب ، بإستعمال :الظفر ، قطعة نقود نحاسية ، نصل سكين (مكواة) ، قطعة زجاج نافذة ، لوح مخدش ، أو مبرد صلب ، التي لها درجات الصلادة التالية.
                              الظفر ، حتى 2.5
                              زجاج النافذة ، حتى 5.5
                              عملة نحاسية ، حتى 3
                              لوح المخدش ، حتى 6.5
                              نصل سكين ، حتى 5.5
                              مبرد صلب ، 6-7
                              ولما كانت معظم المعادن ذات صلادة أقل من 7 ، فإن هذا المقياس البسيط يجعل من السهل تعيين الصلادة ، على وجه التقريب ، للمعدن سواء أكان ذلك في المختبر أم في الحقل.
                              وعند إختيار الأحجار الكريمة يستعمل بائعو المجوهرات المبرد الصلب أولا ، فإذا عض المبرد (أي عمل خدشا صغيرا) في المادة المختبرة فإن صلادتها تكون أقل من 04 ، حيث أن كثيرا من الأحجار الكريمة المقلدة – خصوصا المصنوعة من الزجاج – لها صلادة أقل من 07 ، بينما غالبية الأحجار الكريمة الحيقيقية لها صلادة أعلى من ذلك ، فإن هذا الإختبار البسيط بواسطة مبرد الصلب يساعد في التفرقة بين النوعين (المقلد والحقيقي).
                              ويبين الجدول رقم 1 – الجزء الثالث من هذا الكتاب – المعادن الشائعة مرتبة تبعا لصلادتها.
                              الإنفصام Cleavage

                              هذه هي الخاصية التي بموجبها ينفصم المعدن أو يتشقق بسهولة في إتجاهات معينة ، وينتج عنها سطوح جديدة تعرف باسم مستويات الإنقصام ، وتمثل هذه المستويات أوجها بلورية ممكنة على بلورة المعن ، إذ أن الترتيب الذري الداخلي للبلروة هو الذي يتحكم في تكوين وإتجاه هذه المستويات الإنفصامية ، تماما كما يتحكم في تكوين وإتجاه الأوجه البلورية. ويحدث الإنفصام دائما في المستويات التي تكون فيها الذرات مرتبطة برباط ضعيف ، (شكل – 147).
                              ينفصم المعدن نتيجة لدقه أو ضغطه في إتجاخ معين بواسطة حرف نصل سكين حاد. ويوصف الإنفصام تبعا لسهولة حدوثه وإكتماله بالصفات التالية: كامل ، واضح أو جيد ، غير كامل ، صعب أو صعيف . وكذلك يوصف الإنفصام تبعا لتجاهه البلوري فهناك مثلا إنفصام مكعبي {100} (موازي لأوجه المكعب) كما في معدن الجاليتا والهاليت. أو إنفصام ثماني الأوجه {111} (موازي لأوجه ثماني الأوجه) كما في معدن الفلوريت. أو إنفصام معيني الأوجه {01¯11} ، {10¯11} (موازي لأسطح معيني الأوجه) كما في معدن الكالسيت ، أو منشوري {011} (موازي لأسطح المنشور) كما في معدن الهورتبلند ومعدن الأوجيت ، أو قاعدي {100} (موازي للسطوح القادي) كما في معادن الميكا ، ومعدن الجرافيت ، شكل (148).
                              وعند وصف إنفصام المعدن يجب ذكر درجة السهولة التي يحدث بها ، وكذلك موضعه البلوري ، فمثلا:
                              معادن الميكا لها إنفصام قاعدي كامل {100} ، شكل (148-أ).
                              أرثوكليز له إنفصام قاعدي كامل {100} ، وإنفصام جانبي جيد {010}.
                              أباتيت له إنفصام قاعدي ضعيف {1000}.
                              هونبلند له إنفصام منشوري جيد {011} ، يتقاطع بزوايا تقرب من 120 درجة ، شكل (140- ج).
                              أوجيت له إنفصام منشوري كامل {011} يتقاطع بزوايا تقرب من 90 درجة ، (148 – ج).
                              كالسيت له إنفصام معيني الأوجه كامل {01¯11} ، شكل (148 – د).
                              هاليت له إنفصال مكعبي كتما {001} ، شكل (148 – هـ).
                              كوارتز لا يوجد به إنفصام بالمرة.
                              ويدل على الإنفصام في المعدن وجود شروخ أو خطوط منتظمة المسافات والبعد والإتجاهات على سطح ناعم للمعدن ، شكل (147 – 148) ، هذه الشروخ أو الخطوط هي عبارة عن الأثر الذي يتركه الإنفصام على سطح المعدن وفي هذه الحالات التي نشاهد فيها آثار الإنفصام لا يوجد ما يبرر مطلقا تكسير عينة المعدن أو محاولة فصمها إلى شرائح بواسطة نصل السكين.
                              الإنفصال Parting

                              هو مستويات ضعف ، شكل (150) ، مثل الإنفصام إلا أنه لا يتكون عموما نتيجة للبناء الذري الداخلي للمعدن ، بل نتيجة لعوامل أخرى مثل الضغط أو التوأمية. ولما كانت هذه المستويات وخصوصا المستويات التوأمية موازية لمستويات بلورية فإن الإنفصال يشبه الإنفصام. ولكن الإنفصام يختلف عن الإنفصام في أن الإنفصال لا يوجد بالضرورة في جميع عينات المعدن الواحد ، ولكن يشاهد فقط في تلك البلورات التوأمية أو التي تعرضت إلى ضغط مناسب. وحتى في مثل هذه الحالات التي يشاهد فيها الإنفصال فإن عدد مستويات الإنفصال في الإتجاه الواحد محدودة ، وتبعد هذه المستويات الإنفصالية عن بعضها البعض بمسافات غير متساوية عموما. ومن أشهر أمثلة الإنفصال الذي يحدث في المستويات التوأمية والتركيبية (مستويات ضعف في البناء) ذلك الإنفصال القاعدي في معادن البيروكسين ، شكل (150) ، والإنفصال معيني الأوجه في الكوراندوم ، والإنفصال ثماني الأوجه في الماجنتيت.
                              المكسر Fracture

                              يعرف المكسر بأنه نوع السطح الناتج عن كسر المعدن في مستوى غير مستوى الإنفصام. تعطي المعادن التي ليس فيها إنفصاما مكسرا بسهولة ، وتستخدم الصفات التالية في وصف الأنواع المختلفة من المكسر.
                              محاري: عندما يشبه السطح المكسور الشكل الداخلي لصدفة المحارة ، أي يكون في هيئة خطوط مقوسة دائرية مثل مكسر قطعة سميكة من الزجاج ، شكل (151) ، ومن أمثلته مكسر الكوارتز.
                              خشن: عندما يكون السطح الناتج جاف غير منتظم وهو منتشر بين كثير من المعادن ، مثل البيريت ، والباريت.
                              مستوي: عندما يكون المكسر أملس تقريبا.
                              ترابي: سطح غير منتظم يعطي بواسطة المعادن الترابية ، مثل الكاولينيت ومعادن البوكسيت.
                              مسنن: عندما يكون السطح الناتج عن الكسر ذا أسنان حادة مدببة ، مثل مكسر قطعة من النحاس (شظايا القنابل).
                              خاصية الطرق والسحب (التماسك) Tancity

                              وهي المقاومة التي يبديها المعدن نحو الطرق والكسر والطحن والإنثناء ، أو بالإختصار تماسك المعدن. وتستخدم الألفاظ التالية في وصف الأنواع المختلفة من تماسك المعدن.
                              قابل للكسر: يتكسر المعدن إلى مسحوق بسهولة مثل البيريت.
                              قابل للطرق: عندما يمكن طرق المعدن إلى صفائح رقيقة ، مثل الذهب ، والنحاس ، والفضة.
                              قابل للسحب: عندما يمكن سحب المعدن إلى أسلاك ، مثل الذهب ، والنحاس ، والفضة.
                              قابل للقطع: عندما يمكن قطع المعدن إلى قشور يمكن طحنها مثل الجبس.
                              قابل للإنثناء: عندما يمكن ثني قشور المعدن بالضغط ، وفي هذه الحالة لا يعود المعدن إلى شكله الأصلي إذا زال الضغط ، مثل الكلوريت والمولدينيت ، والجرافيت.
                              مرن: عندما يمكن ثني قشور المعدن بالضغط ، ولكن بمجرد زوال الضغط يستعيد المعدن شكله الأصلي مثل البيوتيت والمسكوفيت.

                              تعليق


                              • #45
                                الخواص الكهربائية والمغناطيسية Electrical and Magnetic properties

                                =الكهرباء الحرارية Pyroelectiricity

                                هي الخاصية التي بموجبها تتكون على الأطراف المختلفة لبلورة المعدن شحنات كهربائية نتيجة لتسخينه ، وتوجد هذه الخاصية في البلورات ذات التماثل الأدنى ، خصوصا البلورات نصف الشكلية ، (أي التي لها طرفان مختلفان نتيجة لعدم وجود مستوى تماثل بينهما).
                                يعتبر معدن التورمالين من أحسن الأمثلة التي تظهر هذه الخاصية ، ولبلورة التورمالين طرفان أحدهما حاد الزاوية وآخر منفرج الزاوية ، فإذا سخنا البلور فإنه يتولد عند الطرف الحاد شحنات كهربائية موجبة ، بينما يتولد عند الطرف المنفرج شحنات كهربائية سالبة. ويتعرف على السالب من الموجب بواسطة رش البلورة المسخنة بمسحوق مخلظ الكبريت الأصفر وأكسيد الرصاص الأحمر ، فنلاحظ أن أكسيد الرصاص الأحمر ينجذب نحو الطرف السالب التكهرب ، أما الكبريت الأصفر فإنه ينجذب نحو الطرف الموجب التكهرب. وتستعمل بلورات التورمالين ، نتيجة لخاصية الكهرباء الحرارية – في الأجهزة المستخدمة في قياس درجة حرارة إنفجار القنابل.
                                الكهرباء الضغطية Piezoelectricity

                                وهي الخاصية التي بموجبها تتكون على أطراف المعدن شحنات كهربائية نتيجة لضغطه. وتلاحظ الشحنات الكهربائية على الأطراف المختلفة للمحاور البلورية. ومن الأمثلة الهامة لهذه الخاصية معدن الكوارتز الذي يستعمل في أجهزة الراديو والإرسال اللاسلكي للتحكم في التردد.
                                المغناطيسية Magnetism

                                تنجذب بعض المعادن إلى المغناطيس الكهربائي القوي إذا قربت منه في حين تنفر معادن أخرى من المغناطيس. والمعادن الأولى تعرف بإسم بارامغناطيسية ، في حين تعرف الثانية بإسم ديامغناطيسية. وتختلف المعادن البارامغناطيسية من حيث قوة مغناطيسيتها ، فبعضها قوي مثل ماجنتيت (أحد أنواعه المعروفة بإسم حجر المغناطيس ، ويمكنه جذب برادة الحديد) ، والبعض الآخر ضعيف المغناطيسية مثل إلمينيت Ilmenite (FeTiO8). ومن أمثل المعادن الديامغناطيسية الكوارتز والكالسيت والزركون. ولهذه الخاصية قيمتها وأهميتها عند فصل خامات المعادن وتركيزها ، كما هو مستعمل في إستغلال الرمال السوداء التي تحتوي على الماجنتيت والألمينيت والجارنت والزركون والمونازيت.
                                4- الكثافة والوزن النوعي Density and Specific gravity
                                الوزن النوعي للمعدن عبارة عن نسبة كثافة المعدن إلى كثافة الماء (الكثافة النسبية). ولما كانت كثافة الماء عند درجة 4 مئوية تساوي الوحدة ، فإن الرقم الدال على الوزن النوعي هو بعينه العدد الدال على كثافة المعدن باستثناء أن الوزن النوعي لا تمييز له (لأنه يمثل نسبة) أما الكثافة فإنها تميز. فمثلا ، الوزن النوعي للكوارتز يساوي 2.65 ، أما كثافة الكوارتز فتساوي 2.65 جم/سم3 ، يدل الوزن النوعي إذن على نسبة وزن المعدن إلى وزن حجم مساوي له من الماء عند درجة حرارة 4 درجة مئوية.
                                الوزن النوعي (ن) = و/ و - و¯
                                حيث و = وزن المعدن في الهواء
                                و¯ = وزن المعدن في الماء
                                و - و¯ = وزن الماء المزاح
                                = (وزن حجم مساو للمعدن من الماء).
                                فمثلا عندما نقول أن الوزن النوعي لمعدن الكوارتز هو 2.65 فإننا نعني أن عينة معينة من الكوارتز تزن 2.65 مرة وزن حجم مساو لها من الماء. والذهب وزنه النوعي 19 يعني أن الذهي يزن 19 مرة حجم وزن مساو لهذا العينة من الماء. والوزن النوعي خاصية هامة مميزة للمعدن ، وهي ثابتة لا تتغير (عند درجة معينة من الحرارة والضغط) طالما أن التركيب الكيميائي للمعدن لم يتغير ، فإذا تغير التركيب الكيميائي للمعدن نتيجة لإحلال بعض العناصر محل عناصر أخرى في البناء الذري الداخلي ، مثل إحلال الألومنيوم محل السليكون وإحلال الحديد محل المغنسيوم ، فإن قيمة الوزن النوعي للمعدن تتغير تبعا لذلك الإحلال ، وتتراوح بين قميتين أو نهايتين. فمثلا يتراوح الوزن النوعي لمعدن الاوليفين Olivine ( سليكات الحديد والمغنسيوم) بين 3.2 إلى 4.4 بسبب تغير التركيب الكيميائي للألويفين ، وهل هو غني بالمغنسيو (3.2) أو غني بالحديد (4.4) ، أما إذا كان يحتوي نسبة وسطا من المغنسيوم والحديد فإن وزنه النوعي سوف يكون عددا متوسطا بين 3.2 و 4.4.
                                ويختلف الوزن النوعي أيضا باختلاف طريقة رص الذرات في البناء الذري الداخلي للمعدن. فالمعروف أن الذرات قد ترص نفسها في مادة البلورة إنا في هيئة سداسية أو ثلاثية أو مكعبية ، وينتج من ذلك أن السنتيمتر المكعب ، مثلا ، يحتوي في كل حالة على عدد من الذرات مختلف عنه في الحالة الأخرى ، وبالتالي يختلف الوزن لانوعي من حالة إلى أخرى. ومن أمثلة ذلك الكربون ، فقد توجد ذرات الكربون مرصوصة تبعا للنظام المكعبي ، [شكل (6) صفحة (13)] ، لتعطي بلورات معكبة هي معدن الألماس ، وزنه النوعي 3.4 ، أو قد توجد ذرات الكربون مرصوصة بنظام هو النظام السداسي ، [شكل (7) صفحة (13)] ، في بلورات معدن الجرافيت ، وزنه النوعي 2.25.
                                ومن الأسباب التي تؤدي إلى الخطأ في تعيين الوزن النوعي للمعدن بصفة عامة وجود شوائب مختلطة به ، وكذلك وجود فجوات هوائية ، ولذلك عند تعيين الوزن النوعي لمعدن ما ، يجب التأكد من خلو المعدن من مثل هذه الشوائب والفجوات الهوائية ، كما يجب أن يكون المعدن خاليا من آثار التحلل بفعل العوامل الجوية (التأكسد والكربنة والتموه) كما يجب على دارس المعدن تحري الدقة التامة أثناء عملية تعيينه للوزن النوعي للمعدن.
                                ومن بين الطرق العديدة المستخدمة في تعيين الكثافة النسبية أو الوزن النوعي للجوامد ، نذكر الطرق التالية ، والتي تعتبر مناسبة للمعادن:
                                1- طريقة قياس الوزن مباشرة ، حيث يعين الحجم تبعا لقاعدة أرشميدس كما هو الحال في إستعمال الميزان الكيميائية العادي أو موازين خاصة ، مثل ميزان كرواس جولي.
                                2- طريقة قياس الوزن مباشرة ن حيث يعين الحجم من وزن السائل المزاح ، كما هو الحال في قنينة الكثافة المعروفة بإسم اليكنومتر.
                                3- طريقة تعيين النزن النوعي بمقارنته مباشرة بالوزن النوعي لسائل ثقيل عندما يظل المعدن معلقا في السائل.
                                1- طريقة إستعال الموازين:
                                يعين الحجم بقياس الفقد الظاهري في الوزن عندما تغمس قطعة المعدن في سائل مناسب. ففي هذه الحالة تزيح قطعة المعدن كمية من السائل مساوية لحجمها وتبعا لذلك ينقص وزن قطعة المعدن ظاهريا بمقدار وزن السائل المزاح. فإذا كانت و1 تدل على وزن قطعة المعدن في الهواء ، و2 تدل على وزن قطعة المعدن في سائل كثافته ث ، فإن الوزن النوعي ن يكون
                                ن = و1/ و1 – و2 X ن
                                ويستخدم الماء عادة كسائل للإزاحة ، حيث أنه دائما متوفر ، ونظرا لأن كثافته تساوي 1 أو قريبا جدا من 1 ، فإننا لا نحتاج إلى المعامل ث في المعادلة السابقة. ولكن في بعض الأحيان نلجأ إلى استخدام سائل آخر بدلا من الماء الذي قد يذيب المعدن ، أو نظرا لخاصية التوتر السطحي العالي للماء التي تؤدي إلى عدم بلل المعدن بدرجة كافية مما يؤدي إلى إلتصاق فقاقيع الهواء بسطح المعدن والتي تؤدي بدورها إلى رقم منخفض للوزن النوعي. ولهذا لاسبب يفضل إستعمال سوائل عضوية ذات توتر سطحي أقل من الماء مثل التولوين ورابع كلوريد الكربون.
                                تعتبر هذه الطريقة أسهل طريقة لتعيين الوزن النوعي للمعادن ، ويمكن إستخدام الميزان الكيميائي العادي في تعيينها ولو أنه توجد موازيين خاصة لتعيين الوزن النوعي للمعدن بدقة وبسرعة وبطريقة مباشرة ، وتعتمد أساسا على قاعدة أرشميدس ، نذكر منها ميزان "كراوس – جولي" ذي السلك الزنبركي ، شكل (152). ويتكون هذا الجهاز من الأجزاء التالية: 1- أنبوبة خارجية (1) مثبت فيها ورنية داخلية ثابتة.
                                2- أنبوب مستديرة داخلية (2) تتحرك داخل الأنبوبة الخارجية (1) بواسطة رأس كبيرة حلزونية الحركة "ر" ومثبت على هذه الأنبوبة المستديرة ورنية خارجية متحركة ومقياس مدرج من الجانبين. وعندما تتحرك هذه الأنبوبة الداخلية تحمل معها الورنية الخارجية والمقياس المدرج من الجانبين. ويستعمل أحد هذه التدريجين في قراءة مكان هذا القياس المتحرك بواسطة الورنية الثابتة في (1) ، أما التدريج الآخر فيستعمل في قراءة مكان السلك الزنبركي بعد غمر المعدن في الماء بواسطة الورنية المتحركة.
                                3- يوجد بداخل الأنبوبة المستديرة الداخلة عامود معدني (3) يمكن تغيير طوله بجذبه من الداخل إلى الخارج وتثبيته عند الطول المناسب. ويحمل هذا العامود السلك الزنبركي (4) بواسطة ذراع ، ويتدلى في نهاية السلك الزنبركي دليل (5) [خلفه مرآة بها خط أفقي] ، ومعلق بالسلك كفتان أ ، ب.
                                طريقة الإستعمال:
                                1- عند بدء استعمال الجهاز يجب ضبطه بحيث يكون المقياس المدرج والورنتين والدليل (المعلق من السلك الزنبركي) كلها عند الصفر وأن تكون الكفة السفلى مغموسة في الماء ، ونصل إلى هذا الوضع بأن نكيف طول العامود الداخلي الذي يحمل السلك الزنبركي بواسطة اليد ثم نضطه عند الصفر بواسطة المسمار الحلزني الدقيق الذي يوجد أسفل الزنبرك مباشرة.
                                2- توضح قطعة المعدن في الكفة العليا (ب) ، وندير الرأس الكبيرة الحلزونية (ر) والمقياس المدرج من الجانبين والورنية الخارجية إلى أعلى ، حتى نعيد الدليل إلى الصفر مرة ثانية وفي هذا الوضع تسج الورنية الداخلية (ثابتة) القراءة "و" وعلى أحد التدريجين وهي تمثل مقدار الإستطالة في السلك الزنبركي نتيجة لوزن قطعة المعدن في الهواء. ويثبت المقياس المدرج عند هذه القراءة بواسطة مسمار حلزوني صغير (6) عند الطرف السفلي للمقياس.
                                3- ينقل المعدن بعد ذلك إلى الكفة السفى (أ) حيث يغمس في الماء ، وتحرك الأنبوبة المستديرة الداخلية إلى أسفل بواسطة الرأس الكبيرة الحلزونية (ر) ، حتى يقرأ الدليل صفرا مرة أخرى. وأثناء هذه العملية تتحرك الورنية الخارجية (متحركة) إلى أسفل بالنسبة للمقياس المدرج (ثبتناه في المرحلة السابقة) ونأخذ قراءة هذه الورنية في هذا الوضع ولتكن "و¯" على التدريج الآخر ، وتمثل هذه القراءة مقدار الإستطالة في السلك الزنبركي نتيجة لوزن المعدن في الماء (أقل من الإستطالة الأولى بسبب ما فقده المعدن في الوزن نتيجة لغمسه في الماء) والقراءتين "و" ، "و¯" هما كل المعلومات اللازمة لحساب الوزن النوعي للمعدن ، إذ أن:
                                الوزن النوعي = الوزن في الهواء / ما يفقده الوزن في الماء = و/و¯
                                2- طريقة استعمال قنينة الكثافة أو اليكنومتر
                                يستعمل اليكنومتر Pycometer شكل (153) لتعيين الوزن النوعي للقطع الصغيرة من المعادن والأحجار الكريمة. واليكنومتر قنينة صغيرة من الزجاج لها غطاء من الزجاج أيضا ذو ثقب صغير يمر بطول هذا الغطاء المخروطي الشكل. وفي هذه الطريقة يساوي وزن الماء المزاح قطعة المعدن. فإذا كانت:
                                ن تدل على الوزن النوعي للمعدن.
                                ث تدل على كثافة السائل المستعمل (1 في حالة الماء).
                                و1 وزن اليكنومتر خاليا من الماء.
                                و2 وزن اليكنومتر وبداخله المعدن.
                                و3 وزن اليكنومتر وبداخله المعدن وممتلئا بالماء.
                                و4 وزن اليكنومتر ممتلئا بالماء فقط.
                                فإن ن = ث (و2 – و1)/ (و4 – و3) – (و3 – و2)
                                3- طريقة إستعمال السوائل الثقيلة Use of heavy liquids
                                يعني الوزن النوعي للمعدن بمقارنته مباشرة بالوزن النوعي لسائل ثقيل. والقاعدة في ذلك بسيطة ، المعروف أن المعدن الثقيل يسقط إلى القاع إذا غمس في سائل وزنه النوعي أقل من الوزن النوعي للمعدن. فإذا رفعنا الوزن النوعي للسائل – ويحدث ذلك ، مثلا بأن نضيف سائلاا أخر له وزن نوعي أكبر يذوب تماما في السائل الأولى – فإنه يمكننا أن نصل إلى درجة من الوزن النوعي للسائل الناتج الجديد بحيث إذا غمس المعدن فيه فإنه لا يسقط ولا يطفو ولكن يأخذا مكانا وسطا ، أي يظل معلقا في وسط السائل وفي هذه الحالة يكون الوزن النوعي للمعدن مساويا للوزن النوعي للسائل ، ويمكن في هذه الحالة تعيين الوزن النوعي للسائل يسهولة وذلك بواسطة إستعمال ميزان وستفال ، شكل (154) ، حيث يوضع السائل المراد تعيين وزنه النوعي في المخبار الذي يتدلى فيه الغاطس ، ثم توضع أثقال مناسبة على الذراع حتى يبقى الغاطس معلقا في السائل ، والميزان في حالة إتزان. ويقرأ الوزن النوعي من عدد ونوع وموضع الاثقال المستعملة ، ويكون هذا العدد هو نفسه الوزن النوعي للمعدن. وتستعمل السوائل الآتية في تعيين الوزن النوعي للمعدن:
                                1- البروموفورم Bromoform ، وزنه النوعي 2.9.
                                2- سائل ثوليت Thoulet's liquid (يوديد البوتاسيوم والزئبق). ووزنه النوعي 3.17.
                                3- يوديد الميثيلين Methylene iodide ، وزنه النوعي 3.2.
                                4- محلول كليريشي Clerici's solution (مالونات وفورمات الثاليوم) ، وزنه النوعي 4.
                                والمعروف أن السائلين (2) ، (4) يمكن تخفيضهما بواسطة إضافة الماء إليهما وبذلك يقل وزنهما النوعي ، ويستعاد تركيزهما بتبخير الماء أما السائل (1) فإنه يخفف بواسطة الكحول النقي ، بينما يخفف السائل الثالث (3) بواسطة البترول أو الأثير.
                                والوزن النوعي له أهمية كبيرة في التفرقة بين المعادن ، وبعد شئ من المران يمكن أن يتكون لجيولوجي المعادن خبرة وسرعة في تقدير الوزن لانوعي للمعدن بصفة تقريبية بواسطة اليد فنقول أن العدن ثقيل أو متسوط أو خفيف كما في التقسيم التالي الذي يساعد في التعرف على المعدن:
                                المعدن خفيف إذا قل وزنه النوعي عن 02.4 ، الجرافيت.
                                المعدجن متوسط إذا كان وزنه النوعي بين 2.4 ، 3.2 ، مثل الكوارتز.
                                المعدن ثقيل إذا كان وزنه النوعي بين 3.2 ، 5.00 مثل الباريت.
                                المعدن ثقيل جدا إذا كان وزنه النوعي أكبر من 5.00 ، مثل الذهب.
                                وإذا أريد تعيين الوزن النوعي بدقة فلابد من إستعمال أي من الطرق سالفة الذكر. ويبين جدول رقم (2) – الجزء الثالث من هذا الكتاب – المعادن الشائعة مرتبة تبعا لوزنها النوعي.
                                ويستفاد من إختلاف الوزن النوعي في فصل المعادن والخامات المعدنية وتركيزها. وتستغل الطبيعة أيضا هذا الإختلاف في الوزن النوعي في فرز المعادن. وتجميعها في أمكان مختلفة كل بحسب وزنه النوعي. فمثلا ، المعادن الثقيلة لا تنتقل مسافات كبيرة وتتركز بالقرب من مصادرها الأصلية ، أما المعادن الخفيفة فيمكن للسيول أو المياه الجارية أو حتى الرياح أن تنقلها إلى مسافات بعيدة عن مصادرها الأصلية وبذلك تفصلها عن المعادن الثقيلة.
                                وأثناء تبلور المجما Magma – أي المادة المصهورة التي تتكون منها المعادن والصخور النارية – ترسب المعادن الثقيلة إلى القاع بينما تطفو المعادن الخفيفة وتبقى بالقرب من الجزء العلوي للجسم المتبلور.

                                تعليق

                                يعمل...
                                X